Loading...
机构名称:
¥ 3.0

用于量子计算的图形演算,例如 ZX 演算 [9]、ZW 演算 [10] 和 ZH 演算 [2],是设计和分析量子过程的强大而直观的工具。它们已经成功应用于基于测量的量子计算研究 [15]、通过对表面码进行格点手术进行纠错 [12,13],以及量子电路优化 [4,11,22]。它们与“路径求和” [1,23,28] 的紧密联系,以及它们各自的完整方程理论 [4,16,21,27],使它们成为自动验证的良好候选者 [7,14,17]。一个重要的问题是综合问题,其答案对许多不同方面都有好处。给定一个量子过程的描述,我们如何将其转换成 ZX 图?这一切都取决于所提供的描述。我们已经展示了如何有效地从量子电路 [4]、基于测量的过程 [15]、一系列格子手术操作 [13]、“路径求和” [23] 甚至过程的整个矩阵表示 [20] 获取图表。虽然最后一种转换在矩阵大小方面是有效的,但是矩阵本身的大小会随着量子比特的数量呈指数增长,因此实际上很少有过程会以整个矩阵的形式给出。然而,矩阵表示有一个优势:它 (本质上) 是唯一的。两个量子算子在操作上相同当且仅当它们的矩阵表示共线。这与之前的所有不同例子形成了对比,例如两个不同的量子电路可以实现相同的算子。

图解演算中的量子多值决策图

图解演算中的量子多值决策图PDF文件第1页

图解演算中的量子多值决策图PDF文件第2页

图解演算中的量子多值决策图PDF文件第3页

图解演算中的量子多值决策图PDF文件第4页

图解演算中的量子多值决策图PDF文件第5页

相关文件推荐

2011 年
¥4.0
2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥3.0
2020 年
¥8.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥6.0
2021 年
¥1.0