在过去二十年中,电力系统面临着越来越苛刻的运营要求。这些具有挑战性的运营条件是由多种因素造成的,包括负荷增长、基础设施老化、分布式能源 (DER) 的渗透率不断提高、经济电气化以及脱碳等政策举措。电力系统及其组件必须提供高度的运营灵活性,以缓解这些挑战。例如,风能和太阳能等间歇性 DER 的普及增加了对水电站等传统发电资产的需求,以应对突然的负荷发电不平衡。水电站对灵活性的要求越高,磨损就越大,可能会缩短水电涡轮机的使用寿命。为了减少水电站跟踪调度信号突然变化的需要,我们研究了它们与储能系统 (ESS;“基于 ESS 的混合”) 的联合运行。我们的分析侧重于通过基于 ESS 的混合来延长水电站的使用寿命。水电涡轮机(尤其是弗朗西斯涡轮机)的磨损使用寿命损失概念建模,该概念基于涡轮机因各种运行周期而遭受的损坏。然后,我们表明使用 ESS 抵消一些高变化可以延长水电站的剩余寿命。为了证明这一点,我们为这项工作开发了一些建模工具:(1)涡轮机及其调速器各个部件的动态模型;(2)一种控制策略,将缓慢变化的调度信号分配给水电机组,将快速变化的信号分配给 ESS,以使总功率请求保持不变;(3)财务分析模型,以量化这种框架的经济效益。我们使用我们开发的模型来分析实际水电站的调度模式,该水电站的功率输出为 50 MW,水头高度为 152 m。这项工作表明,基于 ESS 的混合可以将水电站的寿命平均延长 5%。然后使用这种寿命延长来估计与水电站维护和更换相关的成本延期的经济效益:平均为 360 万美元。针对 ESS 的大小和涡轮机的成本进行了敏感性分析,以显示收益在涡轮机成本和 ESS 大小范围内的变化。至关重要的是,将损害减少和寿命延长与其他 ESS 价值流(例如提供辅助服务)叠加在一起可以大大增加基于 ESS 的混合的经济效益。当多个价值流叠加并共同优化以获取最大收益时,与适当大小的 ESS 相关的更高成本将更具经济意义。未来将在未来的工作中探索这一维度。
主要关键词