Loading...
机构名称:
¥ 3.0

摘要。我们通过引入众所周知的经典方法的量子扩展,建立了关于量子 Wasserstein 距离的运输成本不等式 (TCI):首先,我们推广 Do-brushin 唯一性条件,以证明一维交换汉密尔顿量的吉布斯态在任何正温度下都满足 TCI,并提供将此第一个结果扩展到非交换汉密尔顿量的条件。接下来,使用 Ollivier 粗 Ricci 曲率的非交换版本,我们证明任意超图 H = ( V, E ) 上的交换汉密尔顿量的高温吉布斯态满足具有常数缩放的 TCI,即 O ( | V | )。第三,我们论证了通过将 TCI 与最近建立的修正对数 Sobolev 不等式联系起来可以扩大 TCI 成立的温度范围。第四,我们证明,在固定点局部不可区分性条件似乎较弱的情况下,该不等式对于正则格上任意可逆局部量子马尔可夫半群的固定点仍然成立,尽管常数略有恶化。最后,我们使用我们的框架证明了准局部可观测量的特征值分布的高斯集中界,并论证了 TCI 在证明正则和微正则集合的等价性以及对弱本征态热化假设的指数改进方面的实用性。

量子浓度不等式

量子浓度不等式PDF文件第1页

量子浓度不等式PDF文件第2页

量子浓度不等式PDF文件第3页

量子浓度不等式PDF文件第4页

量子浓度不等式PDF文件第5页

相关文件推荐

2023 年
¥1.0
2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
1997 年
¥12.0
2020 年
¥3.0
2020 年
¥8.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥6.0
2021 年
¥1.0
2023 年
¥3.0