多形性胶质母细胞瘤 (GBM) 是所有高级别脑癌中最恶性的脑肿瘤之一。替莫唑胺 (TMZ) 是胶质母细胞瘤患者的一线化疗方案。O6-甲基鸟嘌呤-DNA-甲基转移酶 (MGMT) 基因的甲基化状态是肿瘤对 TMZ 化疗敏感性的预后生物标志物。然而,评估 MGMT 甲基化状态的标准化程序是侵入性手术活检,其准确性易受切除样本和肿瘤异质性的影响。最近,将放射图像表型与基因或分子突变相关联的放射基因组学在放射治疗的非侵入性评估中显示出良好的前景。本研究利用从多模态磁共振成像 (mMRI) 中提取的成像特征,提出了一种用于 MGMT 分类的机器学习框架,并进行不确定性分析。成像特征包括常规纹理、体积和复杂分形以及多分辨率分形纹理特征。使用公开的 BraTS-TCIA-GBM 术前扫描和 114 名患者的 TCGA 数据集对所提出的方法进行了评估。10 倍交叉验证实验表明,分形和多分辨率分形纹理特征可以更好地预测 MGMT 状态。使用随机梯度朗之万增强模型集合和多分辨率分形特征的不确定性分析可提供 71.74% 的准确率和 0.76 的曲线下面积。最后,分析表明,与文献中不同的知名方法相比,我们提出的具有不确定性分析的方法具有更好的预测性能。
主要关键词