医学成像中的人工智能 (AI) 应用在收集和使用大型数据集方面仍然面临困难。为解决此问题,一种建议的方法是使用生成对抗网络 (GAN) 生成的虚拟图像进行数据增强。然而,由于生成图像的质量和多样性,尚未探索将 GAN 用作数据增强技术。为了通过生成多样化图像来促进此类应用,本研究旨在使用基于 pix2pix 的模型从肿瘤草图生成自由形式的病变图像,该模型是一种源自 GAN 的图像到图像转换模型。由于 pix2pix 假设一对一图像生成,不适合数据增强,我们提出了 StylePix2pix,它经过独立改进,允许一对多图像生成。所提出的模型引入了来自 StyleGAN 的映射网络和样式块。基于医生创建的 20 幅肿瘤草图的图像生成结果表明,所提出的方法可以重现具有复杂形状的肿瘤。此外,StylePix2pix 的一对多图像生成表明其在数据增强应用中的有效性。
主要关键词