因此,具体而言,如果 M 上不支持任何逻辑运算符,则完整的 k 量子比特逻辑 Pauli 群可在其补码上得到支持。如果擦除 M 中的量子比特是一个可纠正错误,则我们说子集 M 是可纠正的。根据稳定器代码的纠错条件,我们可以说,如果 M 是可纠正的,则任何在 M 上支持的 Pauli 运算符要么与稳定器反向交换,要么包含在稳定器中。相反,如果 M 不可纠正,则存在一个在 M 上支持的非平凡 Pauli 运算符,它与稳定器交换但不包含在稳定器中;也就是说,如果 M 不可纠正,则存在一个在 M 上支持的非平凡逻辑运算符。为了证明清理引理,我们按如下方式进行。我们将阿贝尔化的 n 量子比特泡利群 P 视为二进制域 F 2 上的 (2 n ) 维向量空间,并称如果 P 的相应元素可交换,则向量 x 和 y 是正交的。令 PM 表示 P 的子空间,该子空间由 n 个量子比特的子集 M 支撑。令 S 表示 [[ n, k ]] 量子稳定器代码的稳定器。令 [ T ] 表示子空间 T 的维数。我们可以将 S 表示为 S = SM ⊕ SM c ⊕ S ′ 。(3)
主要关键词