关于脑肿瘤分割的研究已经取得了长足进步,从基于阈值的方法到使用深度学习算法。在本研究中,我们提出了一种基于区域的脑肿瘤分割方法,即活动轮廓模型 (ACM)。使用从多模态脑肿瘤图像分割基准 (BRATS) 2015 数据集(包含 86 幅图像)中获得的流体衰减反转恢复 (FLAIR) 模态磁共振成像 (MRI) 图像数据进行肿瘤分割。我们的分割方法的初始阶段是使用多级 Otsu 阈值为 ACM 算法找到初始初始化点/区域,本研究中使用的级别为 3 级。获得初始初始化区域后,继续使用 ACM 进行分割过程,探索肿瘤区域以获得完整准确的肿瘤区域结果。本研究的结果显示,我们的研究的骰子相似度 (DS) 为 0.7856,总时间为 28.080722 秒,这比我们与之比较的其他方法要好,DS 为 0.75 比 0.78。
主要关键词