Loading...
机构名称:
¥ 1.0

理解人类行为是AI和机器人界的长期挑战,涉及对复杂,依赖上下文的行动和意图的理解。在社会互动的背景下,个人的运动反映了他们的行为和意图。作为人类,我们预测了短期未来的未来运动和状态,以优化流利的相互作用。但是,将这种行为转移到机器人仍然是一个挑战。本项目设想适当的HRI生成强大的机器人行为。尤其是,学生将通过利用在人类运动产生中观察到的高端质量(DDPM)中观察到的高端质量来扩展我们以前的工作[1]中的确定性机器人行为[1] [2]。仍然,为了克服由于经常性降解步骤而导致的DDPM的缓慢推理速度,学生将探索使用一致性模型(CM)进行实时推理[3]。最终目标是生成HRI行为,通过关注机器人行为,多样性和鲁棒性对现实世界的闭合的忠诚度,与人类相互作用非常相似。鉴于最终目标是在实际情况下对其进行测试,因此学生将在培训期间采用合成的遮挡策略,以使模型对现实世界中可能发生的错误姿势估计进行健全。

sergej stanovcic学生的硕士论文ID ...

sergej stanovcic学生的硕士论文ID ...PDF文件第1页