我们首先介绍了分类和预测的近似正确的学习理论。然后,我们考虑调谐参数的正则化和数据驱动的选择。我们将讨论如何使用Python和Scikit-Learn软件包执行监督的学习任务。我们将讨论规范正常手段模型。在此模型中,我们将以不同的方式激励收缩估计器,并证明收缩估计器可以统一地主导常规估计器的著名结果。我们接下来将引入深度神经网,这是一种非常成功的监督学习方法。在这种情况下,我们还将考虑用于训练神经网的数值方法,例如随机梯度下降。我们通过讨论变压器和(大型)语言模型来完成课程的这一部分,这是深度神经网的应用,最近在最近受到了特别关注。课程的下一部分将涵盖在线和自适应学习的不同框架。我们将从对抗性在线学习设置开始,那里根本没有对数据生成的概率假设。我们将接下来考虑多臂匪徒,并回顾一些理论结果,为在土匪设置中用于学习的算法提供性能保证(后悔界限)。
主要关键词