Loading...
机构名称:
¥ 1.0

针对摄像机-LLM系统的域适应技术DOCAS AKINYELE,GODWIN OLAOYE日期:2024摘要:将来自相机的视觉数据与语言模型集成的视觉数据的摄像机模型(摄像头)对于各种应用至关重要,包括各种应用,包括实时图像字幕字幕,对象识别,对象识别,互动AI II系统。但是,这些系统通常由于域的变化而面临挑战 - 相机硬件的差异,环境条件和语言上下文变化。域适应技术通过使模型能够在培训和部署环境方面有效地跨不同领域执行,以解决此问题。本文探讨了与摄像机-LLM系统相关的关键领域适应技术。它涵盖了数据增强,功能一致性,对抗性训练,转移学习和生成模型。此外,它研究了这些技术如何减轻相机数据中变异性的影响并改善视觉输入和语言生成之间的交叉形态对齐。本文还讨论了诸如实时字幕,对象检测和AR/VR等应用程序,以及评估适应性绩效的评估指标。未来的方向指向多域适应性,自适应学习技术和人类在循环系统中。这些进步有望为真实应用程序提供更健壮和广义的摄像头系统。简介摄像机模型(摄像机-LLM)系统代表了视觉感知和自然语言理解的集成方面的重大进步。通过将通过相机捕获的图像数据与复杂的语言模型相结合,这些系统可实现一系列应用程序,从实时图像字幕和对象检测到交互式AI和增强现实体验。随着人工智能的能力继续增长,可以在各种环境中无缝运行的强大摄像头系统的需求变得越来越重要。

摄像机-LLM系统的域适应技术

摄像机-LLM系统的域适应技术PDF文件第1页

摄像机-LLM系统的域适应技术PDF文件第2页

摄像机-LLM系统的域适应技术PDF文件第3页

摄像机-LLM系统的域适应技术PDF文件第4页

摄像机-LLM系统的域适应技术PDF文件第5页

相关文件推荐

2025 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0