摘要。扩散模型已在图像,音频和视频生成任务中显着提高了最新技术的状态。但是,它们在实际情况下的应用是由于推理速度缓慢而阻碍。从一致性模型中汲取灵感,我们提出了pproximation m odel(Splam)的s ub-p ath linear,它可以加速扩散模型,同时保持高质量的图像产生。SPLAM将PF-ode轨迹视为一系列的PF-ode子路径除以采样点,并利用子路线线性(SL)ODES沿每个单独的PF-ode子path形成一个预处理且连续的误差估计。此类SL-dodes上的优化允许Splam与累积近似误差较小的构图构图。还开发了一种有效的蒸馏方法,以促进预训练的扩散模型(例如潜在扩散模型)的局限。广泛的实验结果表明,SPLAM达到了显着的训练效率,只需要6个A100 GPU天才能制造出2到4步生成的高质量生成模型。对Laion,MS Coco 2014和MS Coco 2017数据集进行了全面评估,还表明,Splam超过了几步生成任务中现有的加速方法,在FID和生成图像的质量上都实现了最先进的性能。
主要关键词