Loading...
机构名称:
¥ 1.0

计算蛋白设计正在成为一种有力的工具,可以使用新颖或增强的功能创建酶,这些功能是无法使用传统方法(例如理性工程和定向进化)来实现的。但是,迄今为止,大多数设计的蛋白质由结构上简单的拓扑组成,远非自然界中采样的复杂性。为了克服这一限制,我们开发了一条基于深度学习的管道,利用Alphafold2的难以置信的精度来设计具有复杂自然蛋白质拓扑和高实验成功率的蛋白质。我们将方法应用于膜蛋白(例如GPCR和Claudins)的可溶性类似物的设计。我们证明我们的可溶性类似物是高度稳定的,在结构上是准确的,并且能够支持溶液中抗体或G蛋白结合的天然表位。然后,我们将管道的功能扩展到高度特异性蛋白质粘合剂的设计。现在,我们能够针对具有前所未有的实验成功率设计粘合剂,例如PD-L1或CD45,以及更具挑战性的靶标,例如CRISPR-CAS核酸酶,Argonautes和常见过敏原。这些进步为具有复杂功能以及在研究,生物技术和疗法中的复杂功能和潜在应用的蛋白质精确设计铺平了道路。

AUSBI讲座

AUSBI讲座PDF文件第1页

相关文件推荐

2021 年
¥4.0
2024 年
¥15.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2020 年
¥9.0
2022 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥2.0
2023 年
¥61.0
2023 年
¥61.0
2021 年
¥6.0
2012 年
¥8.0
2021 年
¥4.0
2023 年
¥60.0
2020 年
¥4.0
2020 年
¥10.0
2020 年
¥49.0