摘要 - 扩散模型在各种图像生成任务(包括图像超分辨率)上实现了令人印象深刻的性能。尽管它们令人印象深刻,但由于大量的降级步骤,扩散模型的计算成本很高。在本文中,我们提出了一种新型的加速扩散模型,称为部分扩散模型(PDMS),用于磁性成像(MRI)超分辨率。我们观察到,扩散一对低分辨率和高分辨率的图像的潜力逐渐收敛,并在一定的噪声水平后变得难以区分。这激发了我们使用某些潜在的低分辨率来对相应的高分辨率潜在。使用近似值,我们可以跳过一部分扩散和降解步骤,从而减少训练和推理的计算。为了减轻近似误差,我们进一步引入了“潜在对齐”,该误差逐渐插入并接近低分辨率潜在的高分辨率潜在潜在的潜在。部分扩散模型与潜在对齐结合,基本上建立了一种新的轨迹,与原始分化模型中的那些相比,潜伏期逐渐从低分辨率转变为高分辨率图像。在三个MRI数据集上进行的实验表明,部分扩散模型可实现比起原始扩散模型比原始扩散模型更少的固定步骤。另外,它们可以与最近的加速扩散模型合并,以进一步提高效率。
主要关键词