摘要:体现的AI正在逐步探索大型语言模型(LLMS),以进行机器人技术的有效计划。体现AI的最新进展使LLMS能够将视觉观察和高级目标提示解析为可执行子任务。但是,这些现有方法通常完全基于环境的初始状态执行计划,从而导致生成更长的计划时的基础弱化。通过以语言的形式纳入环境反馈来结合循环的一些最新指示。与这些方法不同,我们介绍了计划扩散器,这是一种新颖的“闭环”方法,用于逐步计划,并在循环的每个步骤中进行视觉反馈伴奏。具体来说,我们的方法自动加入采用LLM来生成单步文本子目标和扩散模型,以将其转化为可视觉子目标,用于后续计划。最后,一个能够实现这些亚目标图像的目标政策将其执行。对Ravens基准套件的全面评估表明,计划扩散器超过了最先进的方法,尤其是在长期任务中。此外,我们的方法在分发场景中证明了强大的概括性 - 可轻松处理看不见的颜色,对象和增加任务复杂性。
主要关键词