Loading...
机构名称:
¥ 1.0

最近已经提出了动机的强大生成模型,但这些方法中很少有支持柔性蛋白质配体对接和亲和力估计。没有人可以直接对多种结合配体进行同时建模,也可以根据药理学相关的药物靶标进行严格的标准,从而阻碍了它们在药物发现工作中的广泛采用。 导致这项工作,我们提出了FlowDock,这是一种基于条件流量匹配的深几何生成模型,该模型学会了将其直接映射到其绑定的(Holo)对应物中,以将其映射到任意数量的结合配体中。 此外,Flowdock与其每种生成的蛋白质配体复杂结构中提供了预测的结构置信度评分和结合亲和力值,从而实现了新(多配体)药物目标的快速虚拟筛选。 对于常用的PoseBusters基准数据集,Flotdock使用Unbound(APO)蛋白质输入结构实现了51%的盲区对接成功率,而没有任何来自多个序列比对的信息,并且对于具有挑战性的新Dockgen-E数据集,FlotDock与单次序列Chai-1的性能相匹配。 此外,在第16个社区范围内的结构预测技术批判性评估(CASP16)的配体类别中,Flowdock在140种蛋白质配体复合物中的药理学结合亲和力估计的前5位方法中排名,证明了其在虚拟筛选中的学位表达的功效。没有人可以直接对多种结合配体进行同时建模,也可以根据药理学相关的药物靶标进行严格的标准,从而阻碍了它们在药物发现工作中的广泛采用。导致这项工作,我们提出了FlowDock,这是一种基于条件流量匹配的深几何生成模型,该模型学会了将其直接映射到其绑定的(Holo)对应物中,以将其映射到任意数量的结合配体中。此外,Flowdock与其每种生成的蛋白质配体复杂结构中提供了预测的结构置信度评分和结合亲和力值,从而实现了新(多配体)药物目标的快速虚拟筛选。对于常用的PoseBusters基准数据集,Flotdock使用Unbound(APO)蛋白质输入结构实现了51%的盲区对接成功率,而没有任何来自多个序列比对的信息,并且对于具有挑战性的新Dockgen-E数据集,FlotDock与单次序列Chai-1的性能相匹配。此外,在第16个社区范围内的结构预测技术批判性评估(CASP16)的配体类别中,Flowdock在140种蛋白质配体复合物中的药理学结合亲和力估计的前5位方法中排名,证明了其在虚拟筛选中的学位表达的功效。可用性和实现源代码,数据和预训练的模型可在https://github.com/ bioinfaramefaraminelearning/flowdock上找到。

FlowDock:生成蛋白质配体对接和亲和力预测的几何流量匹配

FlowDock:生成蛋白质配体对接和亲和力预测的几何流量匹配PDF文件第1页

FlowDock:生成蛋白质配体对接和亲和力预测的几何流量匹配PDF文件第2页

FlowDock:生成蛋白质配体对接和亲和力预测的几何流量匹配PDF文件第3页

FlowDock:生成蛋白质配体对接和亲和力预测的几何流量匹配PDF文件第4页

FlowDock:生成蛋白质配体对接和亲和力预测的几何流量匹配PDF文件第5页

相关文件推荐