背景:化生乳腺癌(MBC)是乳腺癌的罕见且高度侵略性的组织学亚型。仍然存在可用于临床实践的精确预测模型。方法:本研究利用SEER数据库(2010 - 2018)的患者数据进行数据分析。我们利用预后因素来开发一种新型的机器学习模型(CATBOOST)来预测患者的存活率。同时,我们医院的MBC患者队列被用来验证我们的模型。我们比较了三组患者的放射治疗的好处。结果:我们开发的Catboost模型表现出很高的准确性和正确性,使其成为预测MBC患者(1年AUC = 0.833,3年AUC = 0.806; 5年AUC = 0.810)的最佳表现模型。此外,Catboost模型在外部独立数据集中保持强劲的性能,1年生存率的AUC值为0.937,3年生存率为0.907,5年生存率分别为0.890。放射治疗更适合于接受M0阶段接受乳房持胸腔手术的患者[组:(OS:HR = 0.499,95%CI 0.320 - 0.777 P <0.001; BCSS:HR = 0.519,95%CI 0.290 - 0.290 - 0.929 P = 0.008)和那些在TT3-3-3-3-3-3-M中(OS:HR = 0.595,95%CI 0.437 - 0.810 P <0.001; BCSS:HR = 0.607,95%CI 0.427 - 0.862 P = 0.003)],与经过T1-2/N0-1M0的患者相比,接受了Mastrosy t1-n0-1m0阶段, 0.730; BCSS:HR = 1.909,95%CI 1.036 - 3.515 P = 0.038)。结论:我们开发了三个机器学习预后模型,以预测MBC患者的存活率。放射疗法被认为更适合接受M0阶段进行乳腺癌手术以及在T3-4/N2-3M0阶段进行乳房切除术的患者。
主要关键词