其中b是包含v ∗的立方体,d是在ℝ3上所有概率度量的空间pℝ3上的合适距离函数。大多数现有的作品,很少有例外(请参见第2节)作为通常的L 2距离,(2)通过基于梯度的方法或在空间B×So3ðÞ上进行的一种详尽搜索来求解。然而,由于体积的不规则形状,f L 2的景观可能是高度非凸,基于梯度的方法将失败,初始化较差。基于详尽的基于搜索的方法可以返回更准确的结果,但如果实施天真实施,则具有巨大的成本。利用F L 2(8)的卷积结构的方法可以提高计算速度,但仍被认为是大容量的昂贵。是由这些问题激励的,在本文中,我们将基于1-Wasserstein距离的解决方案(2)提出一种对齐算法,该算法比欧几里得距离更好地反映了僵化的变换,而与欧几里得距离更好地反映了僵化的变换,从而创造了更好的损失景观。利用这一事实,我们使用贝叶斯优化的工具来最小化(2),它能够返回全局优化器,而对目标的评估比详尽的搜索要少得多。所产生的算法比现有算法提高了性能,因为我们将在真实蛋白质分子的比对上证明。
主要关键词