摘要:将电池保持在特定温度范围内对于安全性和效率至关重要,因为极端温度会降低电池的性能和寿命。此外,电池温度是电池安全法规的关键参数。电池热管理系统(BTMS)在调节电池温度方面是关键的。虽然当前的BTMS提供实时温度监测,但缺乏预测能力却构成了限制。本研究介绍了一种新型混合系统,该系统将基于机器学习的电池温度预测模型与在线电池参数识别单元相结合。标识单元不断实时更新电池的电气参数,从而提高了预测模型的准确性。预测模型采用自适应神经模糊推理系统(ANFIS),并考虑了各种输入参数,例如环境温度,电池电流温度,内部电阻和开路电压。该模型通过基于实时数据动态调整热参数来准确地在有限时间范围内准确预测电池的未来温度。实验测试是在一系列AMB温度范围内对锂离子(NCA和LFP)圆柱细胞进行的,以在不同条件下验证系统的准确性,包括电荷状态和动态载荷电流。提议的模型优先考虑简单,以确保实时的工业适用性。
主要关键词