Loading...
机构名称:
¥ 1.0

Neuro-Symbolic编程(N E S Y),以应对培训神经网络的挑战,以解决复杂的推理任务,并带来了可解释性,可靠性和效率的额外好处。n e s y方法与象征性推理一起训练神经模型,但他们面临具有可伸缩性和训练的问题,这些问题将其限制在简单化的问题上。另一方面,纯净的神经基础模型现在可以通过提示而不是训练来达到最先进的表现,但是它们通常不可靠并且缺乏解释性。通过推理程序补充拟释放程序(我们称之为及时的符号符号(P r s y))提供了一种将这些模型用于复杂推理任务的方法。这样做提出了一个问题:神经符号在基础模型时代有什么作用?为了探讨这个问题,我们在计算,数据和程序方面重点介绍了N e s y的三个陷阱。然后,我们认为P r s y可以进行特定于任务的N e S y训练,从而为实现N e s y的最初目标提供机会而没有培训带来的缺陷。关键字:神经束,编程,基础模型,符号,培训

基础模型时代的神经符号编程

基础模型时代的神经符号编程PDF文件第1页

基础模型时代的神经符号编程PDF文件第2页

基础模型时代的神经符号编程PDF文件第3页

基础模型时代的神经符号编程PDF文件第4页

基础模型时代的神经符号编程PDF文件第5页