近年来,人工智能 (AI) 在处理大量数据和产生可操作见解方面取得了惊人的进步。它对各个行业的影响是显而易见且显著的,影响、改善甚至彻底改变了整个行业。近几个月来,生成式人工智能的兴起及其根据给定输入或上下文生成新内容(例如自然语言文本或视频)的能力 [1],成倍地提高了人们对人工智能在创新、行业转型、新业务机会和运营简化方面所能提供的期望。许多生成式人工智能模型被打包为基础模型 (FM)。FM 有多种类型。有针对文本、图像、声音和视频的基础模型,但最著名的 FM 是面向文本的模型,称为大型语言模型 (LLM)。LLM 是人工深度神经网络,可以生成新的面向文本的数据。它们使用来自各种来源的大量文本数据进行训练,例如在线书籍、新闻文章、社交媒体帖子、编程代码和网页。LLM 在各种自然语言处理 (NLP) 任务中表现出色,例如文本摘要、问答、情感分析、代码生成和机器翻译。它们还可以生成富有创意和吸引力的文本,例如故事、诗歌、笑话、歌词、图像、音频和代码,所有这些都由基于文本的提示驱动。从行业角度来看,FM 可以彻底改变我们与软件产品和服务的交互方式。它们可以实现新形式的人机通信,例如对话代理和个人助理。它们还可以增强软件产品的功能和用户体验,例如搜索引擎、电子商务平台和社交媒体网络。Open AI 的 ChatGPT [2] 等产品的兴起表明这种技术对社会的影响有多么深远。人工智能的变革力量在许多企业中都显而易见,包括电信行业。多年来,人们观察到人工智能在电信用例中的重要性日益增加,从而导致了“人工智能原生电信公司”一词的兴起。爱立信最近的一份白皮书 [3] 将“人工智能原生”一词解释为具有“内在可信人工智能能力”的系统,其中人工智能是设计、部署、操作和维护功能的自然组成部分。FM 的强大功能和灵活性使其成为人工智能原生系统的明显基石。Lu 等人。AI 原生系统利用数据驱动和基于知识的生态系统,在该生态系统中创建和使用数据来产生新的基于 AI 的功能,在需要时用学习和自适应 AI 取代静态的、基于规则的机制”[3]。开发包含 FM 组件的软件产品可能会引入法律和知识产权 (IPR) 问题以及额外的工程复杂性。FM 的随机性、数据质量、模型大小、可信度、安全性、监管和隐私方面 [2] 放大了与软件生命周期相关的挑战。呼吁采取行动关注基于基础模型的系统的设计方面 [4],但这一领域需要研究和实践界的更多关注。本文从工程角度反思了利用电信网络中 FM 的 AI 原生系统及其相关影响。
主要关键词