Ian Goodfellow等。 (2014)开创性的GAN论文介绍了一个框架,在该框架中,生成器和歧视器竞争生成逼真的合成数据,革命跨领域的生成建模。 lvmin Zhang等。 (2023)本文通过合并条件控制,从而增强了文本对图像扩散模型,从而实现了细粒的视觉生成。 它通过引入其他调节方法(例如对姿势,颜色和样式的控制)来改善输出。 Christian Ledig等。 (2017)Srgan引入了一种基于GAN的方法,将高档低分辨率图像用于高分辨率图像,从而产生了逼真的细节。 它使用感知损失来捕获常规方法无法实现的更细纹理。 Xuebin Qin等。 (2020)U2-NET提出的方法引入了嵌套的U形网络体系结构,旨在有效且轻巧的显着对象检测。 该模型以更少的计算资源来实现最先进的性能。Ian Goodfellow等。(2014)开创性的GAN论文介绍了一个框架,在该框架中,生成器和歧视器竞争生成逼真的合成数据,革命跨领域的生成建模。lvmin Zhang等。(2023)本文通过合并条件控制,从而增强了文本对图像扩散模型,从而实现了细粒的视觉生成。它通过引入其他调节方法(例如对姿势,颜色和样式的控制)来改善输出。Christian Ledig等。(2017)Srgan引入了一种基于GAN的方法,将高档低分辨率图像用于高分辨率图像,从而产生了逼真的细节。它使用感知损失来捕获常规方法无法实现的更细纹理。Xuebin Qin等。 (2020)U2-NET提出的方法引入了嵌套的U形网络体系结构,旨在有效且轻巧的显着对象检测。 该模型以更少的计算资源来实现最先进的性能。Xuebin Qin等。(2020)U2-NET提出的方法引入了嵌套的U形网络体系结构,旨在有效且轻巧的显着对象检测。该模型以更少的计算资源来实现最先进的性能。