Loading...
机构名称:
¥ 1.0

摘要。本文研究了无源域的自适应基础分段,旨在使用未标记的图像将经过预告片的眼底分割模型调整为目标域。这是一项具有挑战性的任务,因为仅使用未标记数据调整模型是高度风险的。大多数现有方法主要是通过设计技术来仔细生成模型预测的伪标签并使用伪标签来训练模型来解决此任务。在经常获得正适应作用的同时,这些方法与两个主要问题有关。首先,它们往往相当不稳定 - 不正确的伪标签突然出现可能会对模型产生灾难性影响。第二,他们无法考虑前景(例如,杯子)区域通常很小的眼底图像的严重阶级​​失衡。本文旨在通过提出级别平衡的平均教师(CBMT)模型来解决这两个问题。CBMT通过提出一个弱小的卑鄙的教师学习计划来解决不稳定的问题,在该计划中,只有教师模型才能从弱增强的图像中生成伪标签,以训练学生模型以强烈的增强图像作为输入。教师被更新为训练有素的学生的平均值,这可能很吵。这阻止了教师模型突然受到伪标签的突然影响。对于类不平衡问题,CBMT提出了一种新型的损失校准方法,以根据全球统计数据突出前景类别。实验表明,CBMT很好地解决了这两个问题,并且在多个基准测试中的现有方法优于现有方法。

source-free-domain-adaptive-fundus-image-segmentation- ...

source-free-domain-adaptive-fundus-image-segmentation- ...PDF文件第1页

source-free-domain-adaptive-fundus-image-segmentation- ...PDF文件第2页

source-free-domain-adaptive-fundus-image-segmentation- ...PDF文件第3页

source-free-domain-adaptive-fundus-image-segmentation- ...PDF文件第4页

source-free-domain-adaptive-fundus-image-segmentation- ...PDF文件第5页

相关文件推荐

2021 年

...

¥4.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2024 年
¥4.0
2024 年
¥1.0
2010 年
¥7.0
2025 年
¥1.0
2025 年

...

¥1.0
2023 年

...

¥1.0
2025 年
¥1.0
2024 年

...

¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2024 年
¥1.0
2024 年

...

¥1.0