抽象的蛇机器人由于其特殊的身体和步态而变得富裕。但是,由于其复杂的模型,很难计划在多孔环境中进行运动。为了解决这个问题,这项工作研究了一种基于学习的运动计划方法。为可行的路径计划,并提出了一种修改的深Q学习算法,提出了一种弗洛伊德移动的平均算法,以确保蛇机器人通过的路径的平稳性和适应性。一种改进的路径积分算法用于解决步态参数以控制蛇机器人以沿计划的路径移动。为加快参数的训练,设计了一种结合串行训练,并行培训和经验重播模块的策略。此外,我们设计了一个运动计划框架,包括路径计划,路径平滑和运动计划。进行了各种模拟,以验证所提出的算法的效果。
主要关键词