摘要。最近使用的深神经网络(DNN)是通过计算单元(例如CPU和GPU)物理部署的。这样的设计可能会导致重大的计算负担,显着的延迟和密集的功耗,这是物联网(IoT),边缘计算和无人机的使用等应用的关键限制。光学计算单元(例如,超材料)的最新进展揭示了无势能和光速神经网络。但是,超材料神经网络(MNN)的数字设计从根本上受到其物理局限性的限制,例如精确,噪声和制造过程中的带宽。此外,未通过标准的3×3卷积内核完全探索MNN的独特优势(例如,光速计算)。在本文中,我们提出了一种新型的大核超材料神经网络(LMNN),该神经网络(LMNN)最大程度地利用了最先进的ART(SOTA)MNN的数字能力(SOTA)MNN,并通过模型重新参数和网络压缩,同时也考虑了光学限制。新的数字学习方案可以在建模元元素的物理限制时最大化MNN的学习能力。使用拟议的LMNN,可以将卷积前端的计算成本用于制造的光学硬件。两个公开可用数据集的实验结果表明,优化的混合设计提高了分类准确性,同时降低了计算潜伏期。提出的LMNN的发展是朝着无能和光速AI的最终目标迈出的有前途的一步。
主要关键词