抽象细菌DNA甲基化参与了各种细胞功能,从基因表达的调节,DNA修复和限制性化系统来防御病毒和其他异物DNA。甲基分析确定细菌染色体中甲基化的位点,揭示了可能由天然限制酶靶向的基序。因此,对这些基序的识别对于使生物体具有遗传诱因至关重要,其中模仿大肠杆菌中的甲基甲基模式允许保护质粒DNA免受目标生物体的限制,因此可以极大地提高转化效率。 牛津纳米孔技术(ONT)测序可以在测序过程中检测甲基化的碱基,但是需要软件来识别数据中相应的甲基化基序。 在这里,我们开发了Mijamp(Mijamp只是一个甲基床解析器),该软件包是为了从ONT的Modkit的输出或甲基床格式中的其他数据中发现甲基化基序而开发的软件包。 Mijamp采用了人为驱动的改进策略,从经验上验证了针对全基因组甲基化数据的所有基序,从而消除了错误,未解释或过度解释的基序。 Mijamp还可以在特定的,用户定义的主题上报告甲基化数据。 使用Mijamp,我们确定了对照菌株(野生型大肠杆菌)和picosynecococcus sp中的甲基化基序。 菌株PCC7002,为改善该生物体转化的基础奠定了基础。 Mijamp可从https://code.ornl.gov/5g6/mijamp/获得。对这些基序的识别对于使生物体具有遗传诱因至关重要,其中模仿大肠杆菌中的甲基甲基模式允许保护质粒DNA免受目标生物体的限制,因此可以极大地提高转化效率。牛津纳米孔技术(ONT)测序可以在测序过程中检测甲基化的碱基,但是需要软件来识别数据中相应的甲基化基序。在这里,我们开发了Mijamp(Mijamp只是一个甲基床解析器),该软件包是为了从ONT的Modkit的输出或甲基床格式中的其他数据中发现甲基化基序而开发的软件包。Mijamp采用了人为驱动的改进策略,从经验上验证了针对全基因组甲基化数据的所有基序,从而消除了错误,未解释或过度解释的基序。Mijamp还可以在特定的,用户定义的主题上报告甲基化数据。使用Mijamp,我们确定了对照菌株(野生型大肠杆菌)和picosynecococcus sp中的甲基化基序。菌株PCC7002,为改善该生物体转化的基础奠定了基础。Mijamp可从https://code.ornl.gov/5g6/mijamp/获得。