随着人工智能(AI)越来越嵌入医疗保健服务中,本章探讨了开发可靠和道德临床决策系统(CDSS)的关键方面。从从传统统计模型到复杂的机器学习方法的基本过渡开始,这项工作研究了严格的验证策略和绩效评估方法,包括模型校准和决策曲线分析的关键作用。本章强调,在医疗保健中创建值得信赖的AI系统不仅需要技术准确性。它需要仔细考虑公平,解释性和隐私。强调通过AI确保公平的医疗保健提供的挑战,讨论识别和减轻临床预测模型中偏见的方法。然后,本章将解释性挖掘为以人为中心的CDS的基石。此重点反映了这样的理解,即医疗保健专业人员不仅必须信任AI建议,而且还必须理解其基本推理。对医学AI系统隐私漏洞的分析,从深度学习模型中的数据泄漏到针对模型解释的复杂攻击。本文探讨了隐私保护策略,例如差异隐私和联合学习,同时承认隐私保护和模型绩效之间的固有权衡。从技术验证到道德考虑,这种进步反映了开发AI系统的多方面挑战,这些系统可以无缝且可靠地整合到日常临床实践中,同时保持患者护理和数据保护的最高标准。
主要关键词