晶格是几何对象,可以描述为无限,常规n维网格的相交点集。div> div> lattices隐藏了丰富的组合结构,在过去的两个世纪中,它吸引了伟大的数学家的注意。毫不奇怪,晶格发现了数学和计算机科学领域的许多AP平原,从数字理论和二磷剂近似到组合优化和密码学。对晶格的研究,特别是从计算的角度进行的研究,以两个重大突破为标志:LESTRA,LESTRA和LOV的LLL Lattice降低算法的开发,以及80年代初期的ISZ,以及Ajtai在某些LATTICE中最糟糕的案例和平均硬度硬度问题之间的连接之间的联系,而Ajtai发现了一个90年代的最糟糕的casase和平均硬度。LLL算法在最坏情况下提供的解决方案的质量相对较差,但可以为计算机科学中许多经典问题设计多项式时间解决方案。这些包括在固定数量的变量中求解整数程序,在理由上考虑多项式,基于背包的密码系统,以及为许多其他二磷和密码分析问题找到解决方案。ajtai的发现提出了一种完全不同的方法来在密码学中使用晶格。Ajtai的工作没有将算法解决方案用于计算可处理的晶格近似问题来破坏密码系统,这表明了如何利用计算上棘手的近似晶格问题的存在,以构建不可能破裂的密码系统。也就是说,设计加密函数,这些函数很难破坏,这是解决计算上的硬晶格问题。在复杂性理论中,我们说如果最坏的情况很难,一个问题很难,而在加密术中,只有在平均情况下很难(即除了可忽略不计的
主要关键词