Loading...
机构名称:
¥ 1.0

这项工作探讨了使用机器学习检测严重缺陷的最新方法。使用机器学习算法中模式识别的力量,我们为图像尾字符串分析提供了一个自动系统。该系统在仔细标记不同故障分类的广泛数据集上进行培训。这使该模型可以在部署过程中检测和分类未见拖曳图像中的潜在错误。这种方法通过提供客观,自动化和不断学习的解决方案来进行船尾线检查,从而提供了与传统技术相比的重要优势。这可以改变许多行业中硬线完整性的评估方式。该方法通过分析苛刻的线的图像来检测缺陷来自动化检查过程。机器学习算法在模式识别方面表现出色,使其非常适合此任务。所提出的方法涉及在由不同故障类型分类的船尾线图像数据集上训练模型。一旦训练了模型,它就可以分析新图像并有效地对其进行分类,并检测到牵引线中的潜在错误。这种数据驱动的方法比传统方法具有多个优点,包括更好的准确性,效率以及随着时间的推移不断学习和改进的能力。这种方法可能会彻底改变许多行业的回报线控制。算法V3是由Google开发的深度卷积神经网络体系结构。由于有效地使用了卷积过滤器和自举模块,因此在各种图像分类任务中实现了高性能。种子模块堆叠具有并联不同尺寸过滤器的多卷积层,从而允许网络捕获图像的不同特征。这种层次结构方法允许Inception V3学习图像数据的复杂表示,从而在尾字符串分析中获得了更好的错误检测精度。

使用...

使用...PDF文件第1页

使用...PDF文件第2页

使用...PDF文件第3页

使用...PDF文件第4页

使用...PDF文件第5页

相关文件推荐

2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2023 年
¥4.0
2025 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0