摘要 - 随着大型模型的整合,尤其是那些采用深度学习技术的集成,气象预测的领域已经发生了重大的转变。本文回顾了这些模型在天气预测中的进步和应用,强调了它们在转变传统预测方法中的作用。诸如FourcastNet,Pangu-Weather,Graphcast,Climax和Fengwu之类的模型通过提供准确的高分辨率预测,超出了传统数值天气预测(NWP)模型的功能,从而做出了明显的贡献。这些模型利用先进的神经网络体系结构,例如卷积神经网络(CNN),图形神经网络(GNN)和变压器来处理各种气象数据,从而提高了各种时间尺度和空间分辨率的预测准确性。本文解决了该领域中的挑战,包括数据获取和计算需求,并探讨了模型优化和硬件进步的未来机会。它强调了人工智能与常规气象技术的整合,有望提高的天气预测准确性,并为应对与气候相关的挑战做出了重要贡献。这种协同位置将大型模型视为在气象预测不断发展的景观中的关键。
主要关键词