Loading...
机构名称:
¥ 1.0

玩家性能是比赛结果的最关键参数。根据各种参数选择一组玩家,包括一致性,形式,针对特定对手的表现,特定场地的表现,比赛的比赛,比赛类型等的压力等,都提高了球队赢得比赛的可能性。以下研究旨在根据玩家的性能参数来分析和预测玩家的性能。该问题分为两个部分,即击球表现和保龄球表现。该问题被认为是一个分类问题。跑步得分,而所采用的检票口被分类为不同的范围。天真的贝叶斯,决策树,随机森林和支撑向量机(SVM)是研究中使用的算法。随机森林和决策树几乎是相同的,因此,结果最准确。

使用机器学习板球中的球员性能预测分析

使用机器学习板球中的球员性能预测分析PDF文件第1页

使用机器学习板球中的球员性能预测分析PDF文件第2页

使用机器学习板球中的球员性能预测分析PDF文件第3页

使用机器学习板球中的球员性能预测分析PDF文件第4页

使用机器学习板球中的球员性能预测分析PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥2.0
2024 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0