Loading...
机构名称:
¥ 1.0

强化学习(RL)借助深度神经网络中的广告,使多样化的学科中的重大分解。一些早期的亮点是在计算机游戏中(Mnih等,2015),国际象棋和GO(Silver等,2016)和机器人技术(Lillicrap等,2015; Haarnoja等,2018b)。最近的高光包括开发有效的算法,例如矩阵乘法(Fawzi等,2022)和分类(Mankowitz等,2023)。RL在天文学上也有一些应用。Telescope automation is closely related to robotics and RL can be used in telescope control including adaptive optics (Nousiainen et al., 2022; Landman et al., 2021; Nousiainen et al., 2021) and adaptive reflective surface control (Peng et al., 2022) as well as in observation scheduling (Jia et al., 2023a,b, 2022)。进一步向下数据流,RL已应用于射电天文数据处理管道(Yatawatta and Avruch,2021; Yatawatta,2023)进行超参数调整。将模范天文学视为从观察望远镜到科学家的数据流或信息,我们可以看到RL的更多应用以帮助和完善这种流程并激发该出版物。几种方法属于机器学习的伞(ML):监督学习是最常用的方法,在该方法中既可以赋予计算机的输入和所需的输出,以学习执行某个任务。无监督

增强学习

增强学习PDF文件第1页

增强学习PDF文件第2页

增强学习PDF文件第3页

增强学习PDF文件第4页

增强学习PDF文件第5页

相关文件推荐