这种全面的分析强调了增强学习的潜力(RL)通过检查其在各种学科中的技术和应用来改变智能决策系统。该研究对几种增强学习(RL)方法的优势和缺点进行了彻底的检查,例如Q学习,深Q-Networks(DQN),策略梯度方法和基于模型的RL。本文探讨了包括机器人技术,自主系统和医疗保健在内的多个领域中的RL应用程序,展示了其在处理复杂决策任务时的适应性。RL在医疗保健领域表现出了管理临床资源,识别慢性疾病和改善患者疗法的希望。机器人技术使用加固学习(RL)来创建自动导航和自适应运动技能。该研究强调了增强学习(RL)在管理高维状态空间,延迟奖励和无模型学习方面的优势,但它们还指出了某些缺点,包括样本效率低下和探索 - 开发折衷。本文强调了跨行业增强学习(RL)的灵活性和潜在影响,从而为从业者和学者提供了希望在智能系统中利用RL提供深刻信息的信息。在现实世界中,自适应决策的未来可能是由RL与其他AI方法的集成(例如深度学习和转移学习)的整合来塑造的,这可以进一步扩大其对越来越复杂的领域的适用性。关键字:加固学习,机器学习,人工智能,健康,机器人
主要关键词