简介:颅面人体测量比在牙科,颌面外科,发育研究和整形外科等科学中非常有用。分析面部照片的手动方法需要大量时间和精度。这项研究的目的是引入一种应用工具,该工具完全自动化面部照片的分析并将其与手动方法进行比较。材料和方法:在这项横断面研究中,数据库由395张个人资料照片,271张微笑的额叶照片和346张额叶照片组成。使用具有里程碑意义的两阶段完全卷积网络体系结构。在测量8个变量的测量中比较了两种手动和自动分析方法,包括颊走廊空间,中间的高度与面部下部的高度的比率,总面部凸角,面部凸角,鼻腔侧面角度,刺激性角度,刺激性角度和鼻孔角度。使用配对t检验和类内相关系数(ICC)评估两种方法之间的一致性。p <0.05的值被认为是显着的。结果:对于总面部凸度(p = 0.005),鼻叶(p = 0.001)和鼻labial(p = 0.02)角,两种方法之间的差异很大。然而,两种面部凸,刺,鼻孔,鼻孔,颊走廊空间的两种方法之间没有发现显着差异,并且中间的高度与面部下部的高度之比没有两种方法之间的显着差异。除了鼻角角外,所有变量的ICC大于0.69。对于大多数测量变量,自动方法的准确性与手动方法相似。结论:机器学习有可能用于临床软组织分析。它提供了在大图像数据集上执行可靠且可重复分析的能力。关键字:正畸,面部,摄影,机器学习引用了本文:Soleiman Mezerji M,Sheikhzadeh S,Mirzaie M,Gholinia H.通过机器学习完全自动化的正畸照片分析。caspian j dent res 2023; 12:70-81。©作者。出版商:Babol医学科学大学
主要关键词