Loading...
机构名称:
¥ 1.0

阿尔茨海默氏病(AD)是一种复杂的神经退行性疾病,其特征是进行性认知能力下降,记忆力丧失和日常功能障碍。这是全球痴呆症的最常见原因,影响了数百万个人,并对医疗保健系统和社会造成了重大负担(Brookmeyer等,2007; Nichols等,2022)。AD的病因是多因素的,涉及遗传,环境和表观遗传因素的结合(Breijyeh和Karaman,2020年)。目前,在某些情况下,AD诊断涉及病史,身体检查,神经心理学检查和脑脊液分析的结合。成像是一种支持工具,并有助于排除其他认知障碍的原因。但是,专业人士的全面评估对于准确的诊断至关重要(Rodrigue,2013; Duckure and Dickson,2019; Porsteinsson等,2021)。鉴于这些诊断挑战,了解潜在的生物学过程,并确定可靠的生物标志物以早期检测和准确的诊断对于制定有效的治疗策略和干预措施至关重要。近年来,高通量技术的持续进步为探索分子层的复杂疾病提供了前所未有的机会。这些技术改进不仅增加了可用的OMICS平台的多样性,而且增加了它们的解决方案。虽然对单个OMICS平台的分析提供了独特的视角,并捕获了与感兴趣特征相关的特定分子变化,但这种方法也限制了我们对复杂发病机理基础的完整分子景观的理解。为了解决这一限制,人们对跨多个OMIC平台的数据集成(即“多派”)越来越感兴趣,以全面探索在多个生物学层面上发生的相互作用和变化。多摩s集成旨在捕捉生物系统的更广泛的视野,因此在揭开生物领域的复杂分子相互作用方面具有巨大的希望(Ivanisevic and Sewduth,2023年)。这种知识对于增强我们对驱动复杂疾病(例如AD)的基本机制的理解至关重要,并促进了个性化和有针对性的疗法的发展。在这项研究中,我们介绍了四个OMIC平台的综合分析,包括单核苷酸多态性(SNP),甲基化(CPG),转录组(RNA)和蛋白质组学数据,以表征AD的生物学特征。利用宗教秩序的研究与记忆和衰老项目(Rosmap)(Bennett等人,2012年Bennett等,2012),由被分类为无认知障碍(NCI),轻度认知障碍(MCI)和AD患者的个体组成的个体,我们采用综合疾病的方法来预测每个疾病的状态。随后,我们利用了广义规范相关分析(SGCCA)(Kettenring,1971; Tenenhaus等,2014)的变体来集成四个数据集并识别与广告参与者的多摩学特征。

全面的多摩学分析揭示了预测阿尔茨海默氏病的独特特征

全面的多摩学分析揭示了预测阿尔茨海默氏病的独特特征PDF文件第1页

全面的多摩学分析揭示了预测阿尔茨海默氏病的独特特征PDF文件第2页

全面的多摩学分析揭示了预测阿尔茨海默氏病的独特特征PDF文件第3页

全面的多摩学分析揭示了预测阿尔茨海默氏病的独特特征PDF文件第4页

全面的多摩学分析揭示了预测阿尔茨海默氏病的独特特征PDF文件第5页

相关文件推荐

2025 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥15.0
2020 年
¥1.0