设计具有靶向特性的分子对于从药物设计到设计可持续化学过程的应用至关重要[Bilodeau等,2022]。最近,诸如扩散或流匹配模型之类的生成模型成功地生成了与现有化学数据集相似的分子[Hoogeboom等,2022,Runcie and Mey,2023]。虽然扩散模型有望对复杂(高维或组合)空间进行采样,但它们自然不会导致设计通过在线反馈来优化特定属性。同时,贝叶斯优化技术会导致良好的性质最大化,但不容易扩展到复杂的域。因此:我们是否可以根据最佳概念结合生成模型产生有希望的分子的能力,同时根据生成分子的序列实现特性进一步证明?我们最近开始通过利用[Yuan等,2024,Uehara等,2024]的扩散模型来回答这个问题,并通过扩散模型为贝叶斯优化设计算法。现在,我们旨在将这些想法专门为实用方法,并在现实世界中的新分子设计问题上进行测试。
主要关键词