背景:预测性维护是一种创建更可持续、更安全、更有利可图的行业的技术。创建预测性维护系统的关键挑战之一是缺乏故障数据,因为机器经常在故障前进行维修。数字孪生提供物理机器的实时表示并生成预测性维护算法可以使用的数据(例如资产退化)。自 2018 年以来,关于将数字孪生用于预测性维护的科学文献数量激增,这表明需要进行彻底的审查。目标:本研究旨在收集和综合专注于使用数字孪生进行预测性维护的研究,为进一步的研究铺平道路。方法:使用主动学习工具对已发表的使用数字孪生进行预测性维护的主要研究进行系统文献综述 (SLR),其中分析了 42 项主要研究。结果:本 SLR 确定了使用数字孪生进行预测性维护的几个方面,包括目标、应用领域、数字孪生平台、数字孪生表示类型、方法、抽象级别、设计模式、通信协议、孪生参数以及挑战和解决方案方向。这些结果有助于在学术界和行业中使用数字孪生开发预测性维护的软件工程方法。结论:本研究是预测
主要关键词