早期湍流研究已得到包括压力测量在内的实验方法以及热线风速仪 (HWA) 的点测量技术的补充。使用这些侵入式方法的特殊困难包括逆流、涡流和高度湍流。此外,侵入式探头容易受到非线性(需要校准)、对多变量效应(温度、湿度等)的敏感性)以及破损等问题的影响。随着 20 世纪 60 年代中期激光的发展,非侵入式流量测量变得实用。气体激光器问世后不久,Yeh 和 Cummins 就开发了激光多普勒风速仪 (LDA)。这是流体诊断领域最重要的进步之一,因为我们现在拥有了近乎理想的传感器。具体而言,输出完全是线性的,无需校准,输出噪声低,频率响应高,速度测量独立于其他流动变量。在过去的三十年中,LDA 技术在光纤等光学方法以及先进的信号处理技术和软件开发方面取得了重大进步。此外,LDA 方法已扩展到相位多普勒技术,用于测量颗粒和气泡尺寸以及速度。激光和相机技术的快速发展为限定(流动可视化)和随后量化整个流场测量提供了可能性。使用包括第二个摄像头的改进的 PIV 系统也可以测量颗粒和气泡的尺寸。粒子图像测速 (PIV) 的发展已成为众多应用中最受欢迎的流量测量仪器之一。相机和激光技术以及 PIV 软件的现代发展继续提高 PIV 系统的性能及其对困难流量测量的适用性。除了瞬时测量流量外,现在还可以使用高频激光器和高帧率相机进行时间分辨测量。平面激光诱导荧光 (PLIF) 现已提供
主要关键词