本文介绍了 Facebook AI 提交的 WMT20 共享新闻翻译任务。我们专注于低资源设置并参与两对语言对,即泰米尔语 ↔ 英语和因纽特语 ↔ 英语,其中域外双语文本和单语数据有限。我们使用两种主要策略解决低资源问题,利用所有可用数据并使系统适应目标新闻领域。我们探索了利用所有语言的双语文本和单语数据的技术,例如自监督模型预训练、多语言模型、数据增强和重新排名。为了使翻译系统更好地适应测试域,我们探索了数据集标记和域内数据的微调。我们观察到,根据语言对的可用数据,不同的技术提供了不同的改进。基于这一发现,我们将这些技术集成到一个训练流程中。对于 En → Ta,我们探索了一种无约束设置,其中包含额外的泰米尔语双语文本和单语数据,并表明可以获得进一步的改进。在测试集上,我们提交的最佳系统分别对 Ta → En 和 En → Ta 实现了 21.5 和 13.7 BLEU,对 Iu → En 和 En → Iu 分别实现了 27.9 和 13.0。