可靠性工程与系统安全
机构名称:
¥ 1.0

提出了一种评估飞机发动机监测数据的新方法。通常,预测和健康管理系统使用某些发动机部件的退化过程知识以及专业专家意见来预测剩余使用寿命 (RUL)。出现了新的数据驱动方法,可以在不依赖这种昂贵的过程的情况下提供准确的诊断。然而,它们中的大多数都缺乏解释组件来理解模型学习和/或数据的性质。为了克服这一差距,我们提出了一种基于变分编码的新方法。该模型由一个循环编码器和一个回归模型组成:编码器学习将输入数据压缩到潜在空间,以此为基础构建一个自解释的地图,可以直观地评估飞机发动机的劣化率。获得这样一个潜在空间是通过一个由变分推理指导的新成本函数和一个惩罚预测误差的项来规范化的。因此,不仅可以实现可解释的评估,而且还可以实现显著的预测准确性,优于 NASA 流行的模拟数据集 C-MAPSS 上的大多数最先进的方法。此外,我们利用实际涡扇发动机的数据演示了我们的方法在真实场景中的应用。

可靠性工程与系统安全

可靠性工程与系统安全PDF文件第1页

可靠性工程与系统安全PDF文件第2页

可靠性工程与系统安全PDF文件第3页

可靠性工程与系统安全PDF文件第4页

可靠性工程与系统安全PDF文件第5页