在亚马逊基岩中使用生成AI,以增强设备维护中的推荐生成

在制造业世界中,服务报告中的宝贵见解在文档存储系统中通常仍然不足。这篇文章探讨了Amazon Web Services(AWS)客户如何构建一个解决方案,该解决方案可以使用生成AI自动化许多报告中关键信息的数字化和提取。

来源:亚马逊云科技 _机器学习
在制造业世界中,服务报告中的宝贵见解在文档存储系统中通常仍然不足。这篇文章探讨了Amazon Web Services(AWS)客户如何构建解决方案,该解决方案使用生成AI自动化了许多报告中关键信息的数字化和提取。该解决方案在Amazon Bedrock和Amazon Bedrock知识基础上使用Amazon Nova Pro在Amazon Nova Pro中使用Amazon Nova Pro,以生成推荐的动作,以使用现有的专家推荐的现有知识基础与观察到的设备保持一致。随着解决方案的使用,知识基础会随着时间的推移而扩展。AmazonBedRock是一项完全管理的服务,可从领先的AI公司(例如AI21实验室,人类,元素,元,稳定性AI,稳定性AI,MIS,MIS,MISTAIME和AMAZON)的高性AI公司的高性能基础模型(FMS(FMS)以及构建型号的私人应用程序和Amazon以及Capaigitions a General of Cropaz and bedaz and bedaz and of Capair and bedaz bedii of Capabiential and Inderative a bedrock and of Capabiential of Capair and bedrock, Knowledge Base offers fully managed, end-to-end Retrieval-Augmented Generation (RAG) workflows to create highly accurate, low latency, and custom Generative AI applications by incorporating contextual information from your company’s data sources, making it a well-suited service to store engineers’ expert recommendations from past reports and allow FMs to accurately customise their responses.Traditional service and maintenance cycles rely on manual report submission by engineers with expert knowledge. Time spent referencing past reports can lead to operational delays and business disruption.This solution empowers equipment maintenance teams to:Ingest inspection and maintenance reports (in multiple languages) and extract equipment status and open actions, increasing visibility and actionabilityGenerate robust, trustworthy recommendations using experienced engineers’ expertiseExpand the initial knowledge base built by expert engineers to include valid generated recommendationsAccelerate maintenance times and prevent unp