基于 CRISPR 的技术已经改变了生命科学,并在治疗学开发中显示出良好的前景 [1],全基因组 CRISPR 筛选通常用于无偏识别各种细胞表型的调节因子。然而,为基于 CRISPR 的基因组扰动设计高效且特异的向导 RNA (gRNA) 带来了计算挑战。不必要的 gRNA 脱靶会导致靶向效率低下以及产生基因毒性,而脱靶信息不完整会导致实验结果的误解 [2]。我们之前开发了 Guide-Scan [3] 用于可扩展的 gRNA 设计,我们和其他人已经证明 GuideScan 在枚举潜在脱靶和估计 gRNA 特异性方面比其他工具更准确 [3, 2]。一个关键的观察结果是,其他 gRNA 设计工具使用的短读比对器虽然对于典型的读取计数量化任务非常有效,但不能详尽地计算次优比对,甚至不能计算多个读取。
为了更好地了解Truecut Hifi Cas9的高保真度,我们评估了HEK293基因组中的其他基因。使用TEG-Seq进行了更多全基因组筛查,以检测HEK1,HEK4,VEG1和VEG3基因中的靶标。数据表明,Truecut Hifi Cas9比WT-CAS9和供应商I高保真CAS9蛋白产生的脱离目标较少(图1)。将每个编辑位点的脱靶编辑百分比与靶向编辑的百分比进行了比较,以确定相应站点的脱靶/靶向概率比。每个编辑事件均与其概率比(图1A)绘制,并根据概率将OFF目标的总数分组(图1B)。结果表明,与WT-CAS9和供应商I高保真CAS9相比,Truecut Hifi Cas9产生的脱靶编辑明显少得多。truecut hifi cas9只有一个非目标编辑的概率> 10%。相比之下,WT-CAS9和供应商I高保真CAS9分别具有16和6折叠目标(图1B)。
摘要基因治疗是通过破坏与疾病相关基因的表达或替换或纠正受影响细胞类型中突变的基因座的表达来治疗遗传性疾病,癌症或传染病。除了常规的基因转移方案外,设计器核酸酶(例如锌指核酸酶,故事核酸酶,巨核酸酶或CRISPR-CAS核酸酶)在该领域中越来越重要。使用设计师的核酸内切酶的使用使研究人员可以通过促进DNA双链断裂来校正有害突变。CRISPR-CAS技术被广泛用作强大的基因组编辑工具,因为它的简单性质由单个RNA分子引导到目标位点的核酸酶组成。尽管如此,主要问题之一是CRISPR-CAS系统的脱靶活动,该活动与特定的CRISPR-CAS核糖核蛋白(RNP)络合物针对基因组中其他序列的相似性有关。先前的研究表明,除了序列同源性外,靶向活性与细胞中的RNP浓度和基因组暴露于这些RNP的时间正相关。到目前为止,还没有执行很多测定,这些测定详细介绍了影响开目标和脱靶裂解动力学的参数。在我的主论文项目中,我开发了新颖的体外方法,以评估各种参数对靶向和脱靶裂解动力学和切割效率的影响。我的结果表明,CRISPR-CAS DNA裂解动力学在很大程度上取决于RNP,DNA靶位点和RNP脱靶结合位点的浓度。i发现,靶向裂解动力学和效率取决于(i)目标序列本身,(ii)RNPS和靶位点之间的比率,(iii)RNP的浓度,(iv),(iv)非目标裂解位点的浓度以及(v)(v)(v)off target结合位点的浓度。数据表明,单元格中的切割效率不仅取决于目标位点组成本身,而且还取决于脱靶裂解位点的数量,更重要的是 - 更重要的是 - 非目标结合位点的数量。
CRISPR/Cas9 基因组编辑系统的效率在许多作物中仍然有限。利用强启动子来提高 Cas9 的表达水平是提高编辑效率的常用方法。然而,这些策略也增加了脱靶突变的风险。在这里,我们开发了一种新策略,利用内含子介导增强 (IME) 辅助的 35S 启动子来驱动 Cas9 和 sgRNA 在单个转录本中,通过适度增强 Cas9 和 sgRNA 的表达来提高编辑效率。此外,我们开发了另一种策略来富集高表达 Cas9 /sgRNA 的细胞,通过共表达发育调控基因 GRF5 ,这已被证明可以提高转化效率,并且来自这些细胞的转基因植物也表现出增强的编辑效率。该系统将莴苣(Lactuca sativa)中三个目标的基因组编辑效率从 14–28% 提高到 54–81%,且脱靶编辑效率没有增加。因此,我们建立了一种新的基因组编辑系统,该系统大大提高了目标编辑效率,且没有明显增加脱靶效应,可用于表征莴苣和其他作物中的目标基因。
基因组编辑通过提供更快,更具成本效益的方法来在特定靶位点上修改细菌基因组,从而显着提高。基因组编辑很大程度上是基于诱导所需表型的遗传变异和筛查/选择(Pines等,2015)。It is now possible to target spe- cific genomic sites using indirect techniques such as programmable nucleases (CRISPR /Cas9, Zinc Finger Nucleases, and Transcription Activator-Like Effector Nucleases (TALENS)) ( Esvelt and Wang, 2013 ) and more direct methods such as multiplex automated genome engi- neering (MAGE) ( Court et al., 2002 ; Wang et al., 2009; Wang等人,2012年;具体来说,法师使用带有所需突变的单链寡核苷酸,这些突变被重新组合到基因组中,并依赖于甲基指导的不匹配修复系统的成功失活。这最终导致背景突变率提高了两个数量级,并且脱靶突变的积累影响了未来的表型研究(CS O等人,2020年)。Nyerges等。(Nyerges等,2016)随后修改了此方法(Portmage),以克服MAGE的局限性,从而创建具有温度控制的显性负MUTL等位基因,该质粒仅在寡核苷酸整合过程中限制DNA修复以及λ红重组酶酶。这减少了细菌易受突变率增加的时间,从而降低了脱靶效应。在这里我们使用有些人甚至声称该系统的使用基本上可以消除脱靶效应(Nyerges等,2016; cs; org org o et et al。,2020)。许多人现在已经使用这些方法将新型表型与特定的核苷酸变化相关联,尽管没有报告脱靶突变的报道(Russ等,2020; Tiz等,2019; Moura de Sousa等,2017; Sato等,2018; Spohn等,2018; Spohn等,2019)。
重要的是,CALITAS 返回一个独特的位点列表,适合构建脱靶验证面板 *、† 对于 CRISPRitz 和 Cas-OFFinder,使用 bedtools cluster 和 pandas groupby 删除了冗余位点
虽然几种基因编辑蛋白可以有效地切割原代人类细胞中的各种靶标,但这些数据表明,新型 NoveSlice 基因编辑内切酶对靶标染色质环境的敏感性比等效 TALEN 对更高。潜在有害的脱靶效应风险限制了基因编辑技术的临床转化。在基因组不可接近区域中活性降低的基因编辑内切酶可以表现出更少的脱靶效应,因此可以成为开发基因编辑疗法的有力工具。我们在此介绍了一种新型基因编辑内切酶,它对靶标染色质环境表现出更高的敏感性。NoveSlice 可以作为开发新型精准药物(包括体内基因编辑疗法)的重要工具。
GenScript 提供多种 Cas 酶,包括 Cas9、Cas12 和 Cas13 核酸酶,可实现更高的特异性、减少脱靶效应、增强递送、符合 GMP 以及使用增强荧光标签立即检测。
摘要 靶向激活内源基因是细胞工程的重要方法。本文,我们报道了核酸酶失活的 dCas9 同时、顺序或作为单个四部分效应物与转录激活因子 (VPR) 和表观遗传效应物 (组蛋白乙酰转移酶 p300 核心的催化结构域) 融合,可以增强靶基因的激活。复合激活因子 VPRP 在不同细胞类型的一组基因中的表现比单个激活因子更有效。我们利用效应物表征了宿主染色质乙酰化和转录组的脱靶效应。我们的工作表明,转录和表观遗传效应物可以一起使用来增强基因激活,并表明需要进一步优化表观遗传效应物以减少脱靶。