引言纤维板层肝细胞癌 (FLC) 是一种罕见且通常是致命的青少年和青年原发性肝癌 (1, 2)。手术切除是目前 FLC 的标准治疗方法;然而,这不足以治愈局部晚期或转移性疾病患者。目前尚无被证实有效的 FLC 全身疗法,尽管目前的临床研究评估了化疗、免疫疗法和靶向疗法的各种组合的效用 (1)。FLC 是由于 19 号染色体的 1 个拷贝中缺失约 400 kB 所致,这导致 DNAJB1 的第一个外显子(热休克蛋白 40 (Hsp40))取代了 PRKACA 的第一个外显子(蛋白激酶 A 的催化亚基)。由此产生的 DNAJB1-PRKACA 是恶性基因组中发现的唯一复发性结构重排 (3–5)。使用 CRISPR-Cas9 重建产生融合嵌合体的约 400 kB 缺失足以在小鼠模型中重现 FLC (6, 7)。此外,使用睡美人转座子直接表达嵌合体会产生 FLC 样肿瘤 (7),这表明嵌合融合蛋白的表达,而不是其他蛋白质的缺失,是 FLC 的致癌驱动因素。目前治疗 FLC 的主流方法是基于将其归类为亚变异型肝细胞癌 (HCC) (8)。然而,FLC 与 HCC 不同,具有独特的病理学分子驱动因素和独特的组织病理学特征。此外,HCC 导向疗法尚未证明对 FLC 有效。因此,许多研究人员已开始评估 FLC 中过度表达的致癌通路,包括极光激酶 A、EGFR、mTOR 和芳香酶 (9–11)。不幸的是,针对这些途径的方法尚未证明有希望进行进一步研究(12,13)。为了找到新的有效治疗方法,我们进行了一项无偏见的
受体相互作用蛋白激酶 1 (RIPK1) 的支架功能赋予对免疫检查点阻断 (ICB) 的内在和外在抵抗力,并成为改善癌症免疫疗法的有希望的靶点。为了解决 RIPK1 中间域内定义不明确的结合口袋所带来的挑战,我们利用蛋白水解靶向嵌合体 (PROTAC) 技术开发了 RIPK1 降解剂 LD4172。LD4172 在体外和体内均表现出强效和选择性的 RIPK1 降解。LD4172 降解 RIPK1 会引发免疫原性细胞死亡,增强肿瘤滤过淋巴细胞反应,并使雌性 C57BL/6J 小鼠中的肿瘤对抗 PD1 疗法敏感。这项研究报告了一种 RIPK1 降解剂,它可作为化学探针用于研究 RIPK1 的支架功能,也可作为潜在的治疗剂用于增强肿瘤对 ICB 治疗的反应。
摘要:雌激素受体α(ERα)是良好的治疗ER阳性(ER+)乳腺癌的治疗靶标。尽管选择性ER调节剂和芳香酶抑制剂(AIS)取得了巨大的成功,但对这些疗法的耐药性是一个主要的临床问题。因此,作为靶向ERα的新治疗方法,已采用诱导的蛋白质降解和共价抑制作用。这种观点总结了口服选择性ER降解器(SERDS),完整的雌激素受体拮抗剂(CERAN),选择性雌激素受体共价拮抗剂(SERCAS)和蛋白水解靶向嵌合体(Protac)ER DEGRADERS的最新进展。我们专注于已进入临床发育的那些化合物。■简介
ANSYS, Inc. Applied Materials, Inc. Aqua Sciences Inc. Armanino LLP Armanino Solutions LLC Art Semi LLC ASML US LLC ATLAS COPCO COMPRESSORS LLC Atlas Copco Compressors, LLC B. Riley Securities, Inc. BJ Muirhead Company Inc. Banner Industries Bayard, PA BDO USA LLC Bergmann Associates Boywic Farms, LLC Brex, Inc. Broadridge ICS Bruker AXS, LLC Cadence Design Systems, Inc. Cain-White & Company California Dept of Tax and Fee Admin Camtek USA, Inc. Canandaigua City School District Canandaigua-Farmington Water & Sewer Districts CASPIAN IT GROUP Chain Reaction Systems, Inc. Chemical Distributors Inc Chemical Strategies, Inc Chemical Strategies, Inc. ChemTreat, Inc. Chimera Integrations LLC Cintas Corporation Clark Tu-Cuong Nguyen Cleanpart East, LLC Colorado Microcircuits, Inc. Comairco Equipment, Inc. Comsol, Inc. Controlled Contamination Services, LLC Copper Mountain Technologies, LLC 康奈尔大学 Cornerstone Research, Inc. 公司服务公司 (CSC) Corvid Cyberdefense, LLC Coverall North America Inc.
成簇的规则间隔短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统通过使用 CRISPR RNA (crRNA) 引导入侵核酸的沉默,为细菌和古细菌提供针对病毒和质粒的适应性免疫。我们在此表明,在这些系统的一个子集中,与反式激活 crRNA (tracrRNA) 碱基配对的成熟 crRNA 形成双 RNA 结构,该结构指导 CRISPR 相关蛋白 Cas9 在靶 DNA 中引入双链 (ds) 断裂。在与 crRNA 引导序列互补的位点,Cas9 HNH 核酸酶结构域切割互补链,而 Cas9 RuvC 样结构域切割非互补链。当双 tracrRNA:crRNA 被设计为单 RNA 嵌合体时,它还会指导序列特异性 Cas9 dsDNA 切割。我们的研究揭示了一个使用双 RNA 进行位点特异性 DNA 切割的核酸内切酶家族,并强调了利用该系统进行 RNA 可编程基因组编辑的潜力。B
本篇综述探讨了靶向蛋白质降解 (TPD) 这一新兴领域及其在神经科学和临床开发中的有希望的应用。TPD 提供了调节蛋白质水平的创新策略,代表了小分子药物发现和治疗干预的范式转变。重要的是,小分子蛋白质降解剂专门针对中枢神经系统细胞并去除致病蛋白质,而不存在基因组和基于抗体的模式的药物输送挑战。在这里,我们回顾了 TPD 技术的最新进展,重点介绍了具有邻近诱导降解事件驱动和迭代药理学的蛋白水解靶向嵌合体 (PROTAC) 蛋白质降解剂分子,提供了在神经科学研究中的应用,并讨论了将 TPD 转化为临床环境的巨大潜力。
因此,已经开发出许多通过位点特异性DNA多样化实现基因及其产物定向进化的方法。其中许多方法,例如易错PCR、位点饱和诱变或嵌合体生成,都是基于序列文库的生成,然后在体外或体内筛选改良的蛋白质变体。然而,低转化率是这些方法的主要限制因素(Engqvist和Rabe,2019年)。使用可编程核酸酶的基因编辑方法的应用可以实现位点特异性的体内诱变,因此具有用于定向进化的潜力。目前,只有通过表征CRISPR(成簇的规律间隔的短回文重复序列)/Cas9(CRISPR相关)系统,才能实现大规模的定向诱变,因为与以前的系统相比,该系统具有简单性、多功能性和高精度。
近年来,靶向嵌合体(Protac)技术的蛋白水解已成为通过利用细胞自己的破坏机制来清除与疾病相关蛋白质的最有希望的方法之一。要获得感兴趣的蛋白质(POI)的成功降解,杂功能的Protac分子必须首先穿透到细胞中,然后靶向靶标和POI-PROTAC-E3连接酶复合物的靶标和形成。基于这种理解,对细胞渗透性和细胞靶标的评估评估对于评估Protac候选物的疗效至关重要。Protac分子可以分类为非共价和共价,并且可以将共价Protac进一步分为不可逆的和可逆的共价。在这里,我们提出了一个高通量测定法,以使用激酶结合测定和纳米伯特目标参与平台定量测量其细胞内积累来确定不同类型的BTK Protac。
激酶失调与细胞增殖,迁移和存活极为相关,表明激酶是作为抗癌药物发育的治疗靶标的重要性。然而,传统的激酶抑制剂与催化或变构位点结合与显着挑战有关。抗药性和靶向降低和多域蛋白的靶向是影响靶向抗癌药物的效率的显着限制因素。下一代治疗方法似乎已经克服了这些关注,而靶向嵌合体(Protac)技术的使用就是一种这样的方法。Protac与感兴趣的蛋白质结合并募集E3连接酶,以通过泛素 - 蛋白酶体途径降解整个靶蛋白。本综述提供了针对不同激酶的protac的最新进展迹象的详细概述,主要集中于药物化学中的新化学实体。
背景:尽管多年来对癌症诊断和治疗进行了广泛的研究,但癌症仍然是一个主要的公共卫生危害,这主要是由于癌症复杂的病理生理学和基因组成。治疗癌症的一种新方法是使用癌症疫苗,但癌症的不同分子基础降低了这种方法的有效性。在这项工作中,我们旨在使用基质金属蛋白酶 9 蛋白 (MMP9) 作为通用癌症疫苗设计的靶点,它是所有类型癌症存活和转移的必需分子。方法:从 NCBI 数据库获取基质金属蛋白酶 9 蛋白的参考序列以及相关序列,然后使用 BioEdit 检查其是否保守,此外,使用 IEDB 网站分析 B 细胞和 T 细胞相关肽。然后使用 chimera 软件可视化最佳候选肽。结果:发现三种肽是与 B 细胞(SLPE、RLYT 和 PALPR)相互作用的良好候选者,而十种肽是与 MHC1 相互作用的良好靶标(YRYGYTRVA、YGYTRVAEM、YLYRYGYTR、WRFDVKAQM、ALWSAVTPL、LLLQKQLSL、LIADKWPAL、KLFGFCPTR、MYPMYRFTE、FLIADKWPA),全球综合覆盖率为 94.77%。此外,还发现 10 个肽段是与 MHC2 相互作用的良好候选肽段(KMLLFSGRRLWRFDV、GRGKMLLFSGRRLWR、RGKMLLFSGRRLWRF、GKMLLFSGRRLWRFD、TFTRVYSRDADIVIQ、AVIDDAFARAFALWS、FARAFALWSAVTPLT、MLLFSGRRLWRFDVK、GNQLYLFKDGKYWRF、NQLYLFKDGKYWRFS),全球综合覆盖率为 90.67%。结论:23
