MEMS 技术已广泛应用于消费电子、汽车工业、航空航天和生物医疗设备等众多领域。在消费电子领域,MEMS 传感器(如加速度计和陀螺仪)用于智能手机和平板电脑的方向感测和运动跟踪。在汽车工业中,MEMS 传感器用于安全气囊系统、轮胎压力监测系统和电子稳定控制系统等,以提高安全性和性能。在航空航天工业中,MEMS 传感器用于导航系统、惯性测量单元和振动监测系统,以提高飞机的性能和可靠性。
摘要:基于二维(2D)材料的微型和纳米机电系统(MEMS和NEMS)设备与硅基碱对应物相比揭示了新型功能和更高的灵敏度。2D材料的独特性能增强了对2D材料基于纳米机电设备和传感的需求。在过去的几十年中,使用与MEMS和NEMS集成的悬浮2D膜出现了质量和气体传感器,加速度计,压力传感器和麦克风的高性能敏感性。通过MEMS/NEMS传感器提供了积极感测的微小变化,例如在动量,温度和应变的小小变化的被动模式下传感。在这篇综述中,我们讨论了NEM和MEMS设备中使用的2D材料的材料准备方法,电子,光学和机械性能,除了设备操作原理外,制造路线。
近年来,人们对用于入耳式应用的 MEMS 扬声器的兴趣日益浓厚,在声压级、失真和外形尺寸方面取得了令人鼓舞的成果 [1–3]。基于薄膜 PZT 的 MEMS 扬声器有望取代目前用于小型可穿戴设备的笨重扬声器。减小扬声器尺寸并使其适应微制造工艺可以进一步降低功耗并将其集成到更小的设备中,如智能手表和真正的无线耳机。在本文中,我们介绍了 [4] 中所示的扬声器的测量结果,并将结果与 [5] 中提出的集总参数模型和有限元模型进行的仿真结果进行了比较。在使用集总参数和有限元模型进行的仿真中,扬声器产生的声压级超过 120 dB SPL,频率低至 100 Hz。扬声器的响应使用 GRAS RA0045 耳塞耦合器测量,符合国际 60318-4 (IEC) 标准。扬声器的后腔未加载,装置放置在消声 GRAS 室内。设计并 3D 打印了一个适配器,以使扬声器的移动板适应耳塞耦合器的输入。还评估了由于扬声器中使用的薄膜压电材料的复杂非线性行为而导致的总谐波失真 (THD)。实验结果与实际结果之间的差异
课程描述:本课程旨在向学生介绍微系统的理论、设计、模拟、制造和特性。本学期,课程将重点介绍微机电系统 (MEMS),学生将学习基本制造技术、MEMS 设备设计和 MEMS 设备模拟。在课程的一部分中,学生还将在 UTEP 的半导体洁净室工作,在那里他们将学习流程并制造他们的 MEMS 设备。制造完成后,学生将对其设计进行特性描述,并向全班展示。课程先决条件:(EE 3325 w/C 或更高以及 EE 3329 w/C 或更高)EE5390 - 研究生水平的学生:参加本课程研究生部分的学生将被要求完成一份额外的报告,并在学期末提交。课程网站:Blackboard 将用于共享演示文稿和讲义的电子副本。教科书:Eun Sok Kim 博士,《微机电系统 (MEMS) 基础》,第 1 版,McGraw Hill,ISBN:9781264257584 UTEP 学生可通过 VPN 获取该教科书的电子版:www.accessengineeringlibrary.com/content/book/9781264257584
铅锆钛酸盐(PZT)是一种广泛用于微电动机电(MEMS)技术的压电材料,主要是由于其强烈的压电和机电耦合系数[1]。然而,由于PT缓冲液的损失,传统上用于生长PZT薄膜[2],因此其在光子综合电路(图片)中的应用受到限制。通过化学溶液沉积(CSD)方法[3],具有透明缓冲层(LA 2 O 2 CO 3)生长的PZT膜[3],并通过Pockel的调节证明了其在光子应用中的潜力[4]。但是,在这种方法中使用的薄缓冲层的自旋涂层需要平面样品表面,从而限制了其范围。微转移打印(µ tp)可能是绕过这种瓶颈的一种方法[5]。在本文中,我们报告了悬挂的长度高达4 mm的悬挂式PZT优惠券,宽度高达120 µm。然后,我们成功传输了SI基板上的PZT优惠券。这些结果证明了一种可以使PZT膜在芯片的所需位置中稳定的,而完整芯片均匀地平面化的技术。此外,此方法可以为各种光子学应用程序设计MEMS执行器提供额外的自由。
NovoSense的压力传感器是高精度产品,应注意焊接规格。由于紧凑的结构和产品的热容量有限,因此有必要避免周围热力的影响。热变形可能会损坏传感器或削弱其性能。此外,防止通量在焊接过程中输入产品也非常重要。
顾名思义,悬臂梁 MEMS 开关是一种由机械位移控制的电开关。它由两个主要部分组成:底座和悬臂梁(图 1)[1]。悬臂梁由导电材料制成(或其一部分,取决于设计),通常是铝。底座上沉积有一层导电材料层。在设备的这两个导电部分之间施加电压后,形成一个有限平行板电容器 [2, 3],由于电容器板之间的静电吸引力 [4, 5],悬臂梁开始向底座弯曲。悬臂梁以弹性反作用力 [6] 作出反应,并在两个力抵消的位置停止。在某个电压(驱动电压)[7–10] 下,力之间的平衡变得不稳定,悬臂梁在底座上坍塌 [11],从而建立电容器板之间的接触并闭合电路。在该模型中,认为下电极上没有沉积介电层(因此极化电荷可以忽略不计 [12])。新的理论模型考虑了有限平行板电容器中的边缘效应。将理论上获得的驱动电压与计算机模拟的 MEMS 设备驱动电压进行了比较。
• 接触电阻在 1 分钟内迅速减小。然后在接下来的一个小时内逐渐减小。• 如果随后关闭开关并重复测试,则新的起始电阻会更低。• 如果关闭开关并保持关闭状态。下次打开时,接触电阻会再次升高。• 与 MEMS 开关的文献一致。• 注意:即使最高的接触电阻仍然相对较低(小于 2 欧姆)。
非封闭式振膜的压电MEMS扬声器有望产生高声压级(SPL),但存在严重的振膜破裂问题。本文提出了一种具有准封闭式振膜的新型压电MEMS扬声器。准封闭式振膜由对角切割但中心相连的振膜组成,振膜上涂有一层薄薄的Parylene-C。在应力分散结构的共同作用下,Parylene-C薄膜的应用可防止振膜破裂并显著减少空气损耗。成功制作了尺寸为2.5×2.5 mm 2 的小尺寸MEMS扬声器,并在711耳模拟器中对其声学性能进行了测试。在驱动电压为4 V pp 下,测得的SPL在11.8 kHz时达到最大值124 dB。在 35 V pp 的电压下,低频范围 (20 – 500 Hz) 内的 SPL 进一步增加到 88 dB。