产品类:基因治疗:自体造血干细胞基因治疗。FDA批准的使用:在需要常规红细胞输血的成人和儿科患者中治疗β(β)thalassycle。美国初次批准2022。可用剂型:用于静脉输注的悬浮液。剂量:一次性,单剂量给药。基于产品标签建议。给药途径:临床医生管理的静脉输注。禁忌/排除(每个FDA软件包插入):
缩写:新活性物质 (NAS)、弥漫性大 B 细胞淋巴瘤 (DLBCL)、食管鳞状细胞癌 (ESCC)、非小细胞肺癌 (NSCLC)、β 地中海贫血 (BT)、慢性肾病 (CKD)、杜氏肌营养不良症 (DMD)、呼吸道合胞病毒 (RSV) 资料来源:EMA 人类医学亮点 (链接)。PRIME 资格:EMA 自愿计划,旨在为未满足的医疗需求的药物提供科学建议和加速审批
1。Betts M,PA Flight PA,Paramore LC,Tian L,Milenkovic D,ShethS。疾病负担的系统文献回顾 - 依赖于输血依赖的β-地中海疾病。临床。2020; 42(2):322-337 E322。2。Galanello R,Origa R. Beta-Thalassemia。orphanet j Rare。2010; 5:11。3。Origa R. Beta-thalassya。遗传学。2017; 19(6):609-619。 4。 Thompson AA,Walters MC,Kwiatkowski J等。 基因治疗依赖输血依赖性β-甲性贫血的患者。 n Engl J Med。 2018; 378(16):1479-1493。 5。 Jaing TH,Chang Ty,Chen SH,Lin CW,Wen YC,Chiu CC。 β-核阿无血症的分子遗传学:叙事评论。 医学(巴尔的摩)。 2021; 100(45):E27522。 6。 Cappellini MD,Farmakis D,Porter J,Taher A. 输血依赖性thalassymia(TDT)的指南。 2021。 2021 https://thalassaemia.org.cy/wp-content/uploads/2021/06/ guideLine-4th-single-page.pdf 7。 Cappellini MD,Porter JB,Viprakasit V,Taher AT。 β-甲弥弥济于治疗的范式转变:我们将如何通过新的疗法管理这种古老的疾病? 血液复兴。 2018; 32(4):300-311。 8。 taher,Musallam KM,Cappellini MD。 beta-thalassemias。 n Engl J Med。 2021; 384(8):727-743。 9。 汉密尔顿JL,KizhakkeDathu Jn。 聚合纳米载体用于治疗系统性铁超载。 10。2017; 19(6):609-619。4。Thompson AA,Walters MC,Kwiatkowski J等。基因治疗依赖输血依赖性β-甲性贫血的患者。n Engl J Med。2018; 378(16):1479-1493。 5。 Jaing TH,Chang Ty,Chen SH,Lin CW,Wen YC,Chiu CC。 β-核阿无血症的分子遗传学:叙事评论。 医学(巴尔的摩)。 2021; 100(45):E27522。 6。 Cappellini MD,Farmakis D,Porter J,Taher A. 输血依赖性thalassymia(TDT)的指南。 2021。 2021 https://thalassaemia.org.cy/wp-content/uploads/2021/06/ guideLine-4th-single-page.pdf 7。 Cappellini MD,Porter JB,Viprakasit V,Taher AT。 β-甲弥弥济于治疗的范式转变:我们将如何通过新的疗法管理这种古老的疾病? 血液复兴。 2018; 32(4):300-311。 8。 taher,Musallam KM,Cappellini MD。 beta-thalassemias。 n Engl J Med。 2021; 384(8):727-743。 9。 汉密尔顿JL,KizhakkeDathu Jn。 聚合纳米载体用于治疗系统性铁超载。 10。2018; 378(16):1479-1493。5。Jaing TH,Chang Ty,Chen SH,Lin CW,Wen YC,Chiu CC。β-核阿无血症的分子遗传学:叙事评论。医学(巴尔的摩)。2021; 100(45):E27522。6。Cappellini MD,Farmakis D,Porter J,Taher A. 输血依赖性thalassymia(TDT)的指南。 2021。 2021 https://thalassaemia.org.cy/wp-content/uploads/2021/06/ guideLine-4th-single-page.pdf 7。 Cappellini MD,Porter JB,Viprakasit V,Taher AT。 β-甲弥弥济于治疗的范式转变:我们将如何通过新的疗法管理这种古老的疾病? 血液复兴。 2018; 32(4):300-311。 8。 taher,Musallam KM,Cappellini MD。 beta-thalassemias。 n Engl J Med。 2021; 384(8):727-743。 9。 汉密尔顿JL,KizhakkeDathu Jn。 聚合纳米载体用于治疗系统性铁超载。 10。Cappellini MD,Farmakis D,Porter J,Taher A.输血依赖性thalassymia(TDT)的指南。2021。2021 https://thalassaemia.org.cy/wp-content/uploads/2021/06/ guideLine-4th-single-page.pdf 7。Cappellini MD,Porter JB,Viprakasit V,Taher AT。β-甲弥弥济于治疗的范式转变:我们将如何通过新的疗法管理这种古老的疾病?血液复兴。2018; 32(4):300-311。 8。 taher,Musallam KM,Cappellini MD。 beta-thalassemias。 n Engl J Med。 2021; 384(8):727-743。 9。 汉密尔顿JL,KizhakkeDathu Jn。 聚合纳米载体用于治疗系统性铁超载。 10。2018; 32(4):300-311。8。taher,Musallam KM,Cappellini MD。beta-thalassemias。n Engl J Med。2021; 384(8):727-743。9。汉密尔顿JL,KizhakkeDathu Jn。聚合纳米载体用于治疗系统性铁超载。10。mol细胞。2015; 3:3。Brittenham GM。 铁螯合治疗,用于输血过负荷。 n Engl J Med。 2011; 364(2):146-156。 11。 Pennell DJ,Berdoukas V,Karagiorga M等。 在β-地中海贫血的主要患者患有无症状心肌side病的主要患者中,脱氟丙酮或脱脂氧胺的随机对照试验。 血。 2006; 107(9):3738-3744。 12。 Tanner MA,Galanello R,Dessi C等。 使用心血管磁共振共鸣,对脱氟胺和去肌铁对心肌铁的联合治疗对心肌铁的效果的随机,安慰剂控制,双盲试验。 循环。 2007; 115(14):1876-1884。 13。 Cappellini MD,Bejaoui M,Agaoglu L等。 在成人和小儿贫血患者中,具有deferra-sirox的铁螯合作用:在5年的随访中,疗效和安全性。 血。 2011; 118(4):884-893。 14。 taher,Cappellini MD。 beta- thalasalassya的luspatercept:超出红细胞输血。 专家意见Biol Ther。 2021; 21(11):1363-1371。 15。 Shah FT,Sayani F,Trompeter S,Drasar E,Piga A. β-核阿无血症输血的挑战。 血液复兴。 2019; 37:100588。 16。 Shenoy S,Walters MC,Ngwube A等。 使用降低的强度调节:URTH试验,对丘脑的儿童进行无关的供体移植。 生物血骨髓移植。 17。Brittenham GM。铁螯合治疗,用于输血过负荷。n Engl J Med。2011; 364(2):146-156。11。Pennell DJ,Berdoukas V,Karagiorga M等。在β-地中海贫血的主要患者患有无症状心肌side病的主要患者中,脱氟丙酮或脱脂氧胺的随机对照试验。血。2006; 107(9):3738-3744。 12。 Tanner MA,Galanello R,Dessi C等。 使用心血管磁共振共鸣,对脱氟胺和去肌铁对心肌铁的联合治疗对心肌铁的效果的随机,安慰剂控制,双盲试验。 循环。 2007; 115(14):1876-1884。 13。 Cappellini MD,Bejaoui M,Agaoglu L等。 在成人和小儿贫血患者中,具有deferra-sirox的铁螯合作用:在5年的随访中,疗效和安全性。 血。 2011; 118(4):884-893。 14。 taher,Cappellini MD。 beta- thalasalassya的luspatercept:超出红细胞输血。 专家意见Biol Ther。 2021; 21(11):1363-1371。 15。 Shah FT,Sayani F,Trompeter S,Drasar E,Piga A. β-核阿无血症输血的挑战。 血液复兴。 2019; 37:100588。 16。 Shenoy S,Walters MC,Ngwube A等。 使用降低的强度调节:URTH试验,对丘脑的儿童进行无关的供体移植。 生物血骨髓移植。 17。2006; 107(9):3738-3744。12。Tanner MA,Galanello R,Dessi C等。 使用心血管磁共振共鸣,对脱氟胺和去肌铁对心肌铁的联合治疗对心肌铁的效果的随机,安慰剂控制,双盲试验。 循环。 2007; 115(14):1876-1884。 13。 Cappellini MD,Bejaoui M,Agaoglu L等。 在成人和小儿贫血患者中,具有deferra-sirox的铁螯合作用:在5年的随访中,疗效和安全性。 血。 2011; 118(4):884-893。 14。 taher,Cappellini MD。 beta- thalasalassya的luspatercept:超出红细胞输血。 专家意见Biol Ther。 2021; 21(11):1363-1371。 15。 Shah FT,Sayani F,Trompeter S,Drasar E,Piga A. β-核阿无血症输血的挑战。 血液复兴。 2019; 37:100588。 16。 Shenoy S,Walters MC,Ngwube A等。 使用降低的强度调节:URTH试验,对丘脑的儿童进行无关的供体移植。 生物血骨髓移植。 17。Tanner MA,Galanello R,Dessi C等。使用心血管磁共振共鸣,对脱氟胺和去肌铁对心肌铁的联合治疗对心肌铁的效果的随机,安慰剂控制,双盲试验。循环。2007; 115(14):1876-1884。 13。 Cappellini MD,Bejaoui M,Agaoglu L等。 在成人和小儿贫血患者中,具有deferra-sirox的铁螯合作用:在5年的随访中,疗效和安全性。 血。 2011; 118(4):884-893。 14。 taher,Cappellini MD。 beta- thalasalassya的luspatercept:超出红细胞输血。 专家意见Biol Ther。 2021; 21(11):1363-1371。 15。 Shah FT,Sayani F,Trompeter S,Drasar E,Piga A. β-核阿无血症输血的挑战。 血液复兴。 2019; 37:100588。 16。 Shenoy S,Walters MC,Ngwube A等。 使用降低的强度调节:URTH试验,对丘脑的儿童进行无关的供体移植。 生物血骨髓移植。 17。2007; 115(14):1876-1884。13。Cappellini MD,Bejaoui M,Agaoglu L等。在成人和小儿贫血患者中,具有deferra-sirox的铁螯合作用:在5年的随访中,疗效和安全性。血。2011; 118(4):884-893。 14。 taher,Cappellini MD。 beta- thalasalassya的luspatercept:超出红细胞输血。 专家意见Biol Ther。 2021; 21(11):1363-1371。 15。 Shah FT,Sayani F,Trompeter S,Drasar E,Piga A. β-核阿无血症输血的挑战。 血液复兴。 2019; 37:100588。 16。 Shenoy S,Walters MC,Ngwube A等。 使用降低的强度调节:URTH试验,对丘脑的儿童进行无关的供体移植。 生物血骨髓移植。 17。2011; 118(4):884-893。14。taher,Cappellini MD。beta- thalasalassya的luspatercept:超出红细胞输血。专家意见Biol Ther。2021; 21(11):1363-1371。15。Shah FT,Sayani F,Trompeter S,Drasar E,Piga A.β-核阿无血症输血的挑战。血液复兴。2019; 37:100588。 16。 Shenoy S,Walters MC,Ngwube A等。 使用降低的强度调节:URTH试验,对丘脑的儿童进行无关的供体移植。 生物血骨髓移植。 17。2019; 37:100588。16。Shenoy S,Walters MC,Ngwube A等。使用降低的强度调节:URTH试验,对丘脑的儿童进行无关的供体移植。生物血骨髓移植。17。2018; 24(6):1216-1222。 Cappellini MD,Viprakasit V,Taher AT等。 在依赖输血依赖性β-丘脑贫血患者的Luspacept的3期试验。 n Engl J Med。 2020; 382(13):1219-1231。 18。 Cappellini MD,Motta I. 在输血依赖和非依赖性thalassycly中的新治疗靶标。 血液学和Soc-hema-tol教育计划。 2017; 2017(1):278-283。2018; 24(6):1216-1222。Cappellini MD,Viprakasit V,Taher AT等。在依赖输血依赖性β-丘脑贫血患者的Luspacept的3期试验。n Engl J Med。2020; 382(13):1219-1231。18。Cappellini MD,Motta I. 在输血依赖和非依赖性thalassycly中的新治疗靶标。 血液学和Soc-hema-tol教育计划。 2017; 2017(1):278-283。Cappellini MD,Motta I.在输血依赖和非依赖性thalassycly中的新治疗靶标。血液学和Soc-hema-tol教育计划。2017; 2017(1):278-283。2017; 2017(1):278-283。
β 血红蛋白病,如镰状细胞病 (SCD) 和 β 地中海贫血,其特征是血红蛋白亚基 β 基因 (HBB) 的不同突变。这些疾病的表型表现和严重程度各不相同,更严重的表现会导致输血依赖以及感染和铁过载等相关并发症。β 血红蛋白病症状在出生后迅速恶化,因为胎儿血红蛋白 (HbF) 水平开始下降。为了扭转这种下降趋势,目前的治疗计划通常涉及使用羟基脲等药物来提高 HbF 的表达水平。然而,这些治疗只能产生短暂的效果,必须持续使用。基因编辑技术,如 CRISPR/Cas9(成簇的规律间隔的短回文重复序列 - CRISPR 相关蛋白),提供了创造新疗法的机会,这些疗法可以提高 HbF 表达并可能产生永久性影响。已确定两个基因靶点可显著增加 HbF 蛋白表达,即 B 细胞淋巴瘤/白血病 11A 基因 (BCL11A) 和γ 珠蛋白基因的启动子区 (HBG1/2)。为了区分 BCL11A 和 HBG1/2 编辑的有效性,我们进行了一项荟萃分析,首先根据搜索词“β-地中海贫血”、“beta-thal”、“镰状细胞病”、“SCD”和“CRISPR”确定了 119 项可纳入的研究。根据排除和纳入标准,我们对 2018 年至 2021 年纳入研究的 8 项经过同行评审的已发表研究进行了分析。森林图是使用 R(版本 4.1.2)生成的。初步比较分析表明,与 BCL11A 相比,HBG1/2 对诱导 HbF 表达的影响显著 (p < 0.01) 更大。
改善未结合的A -Globin和非A -Globin链之间的平衡或纠正无效的红细胞。修饰的TFG-β家族受体拮抗剂,如Sotatercemp(ACE-011)和Luspatercept(ACE-536)阻止配体与ACTR-II受体结合,并随后激活SMAD4信号通路,4改善Ery-Throid Throid Cell和红细胞的产生。通过CRISPR Therapeatics成功的基因疗法实现了未结合A -Globin与非A -Globin链的异常比例,并得到了波士顿顶点药物的支持。称为CTX001的体细胞疗法使用了编辑的患者自己的造血干细胞(HSC)来刺激胎儿血红蛋白的产生。5通过XPO1抑制HSP70的细胞内局部局部局部局部可能会合并这两个治疗目标。几条证据表明,红细胞使用分子伴侣在红细胞发育过程中对不稳定的过量A -Glo- bin链分割,6-8,因此,靶向这种伴侣的靶向时,当过量的globobin tetramer会累积时,靶向这种伴侣可能在β -tha -thaplamasemia中有用。许多组指出,分子伴侣HSP70在红细胞9-11中积聚至高水平,对于简化胚芽成熟很重要。11正常的人红细胞成熟需要在成熟后期的caspase-3瞬时激活,以防止过度的红细胞生产。激活的胱天蛋白酶可以切割GATA-1,从而导致成熟停滞和/或凋亡。12 Ribeil等。 14 GATA-1不再受到保护,导致末期成熟停滞和凋亡。12 Ribeil等。14 GATA-1不再受到保护,导致末期成熟停滞和凋亡。表明EPO会导致HSP70转移到核中,结合GATA-1并保护其免受caspase-3裂解。相反,在EPO剥夺期间,HSP70被排除在细胞核中,而GATA-1被cas-pase-3裂解,导致凋亡死亡。13因此,HSP70的细胞内位置的改变似乎在红细胞生存力中起关键作用(图1)。在β-丘脑贫血中观察到的无效性红细胞生成的特征是在多染色体阶段加速了红细胞分化,成熟停滞和凋亡。在人β-thal虫蛋白粒细胞的成熟过程中,HSP70直接通过过量的游离A-格珠蛋白链直接在细胞质中螯合(图1)。核定靶向的HSP70突变体或caspase-3-无分解的GATA-1突变体恢复了β-thal核阿无血成红细胞的终末成熟。14在Haematologica,Guillem等。3跟进这种机制,以表明导出蛋白1(XPO1)调节在正常条件下HSP70在红细胞中的HSP70的核质质位置。Guillem等。证实,用XPO1抑制剂KPT-251治疗红细胞增加了HSP70的核水平,从caspase-3裂解中救出了GATA1,并改善了末端红细胞原理(图1)。尽管使用核出口的选择性抑制剂(SINE)用于治疗淋巴瘤和多骨髓瘤
上个季度,I 期和 II 期临床试验中的基因治疗产品数量有所下降,延续了 2022 年第四季度的趋势。一种用于输血依赖性β地中海贫血 (TDT) 或严重镰状细胞病 (SCD) 患者的疗法 exagamglogene autotemcel 或 exa-cel 已于第一季度申请批准。同样在基因治疗管线中,肿瘤学和罕见病仍然是总体和临床开发的主要领域。这两个领域仍然是非转基因细胞疗法管线开发的首要领域。在 RNA 管线中,罕见病仍然是最主要的靶向治疗领域,而抗癌疗法是第二大靶向领域。
血红蛋白病(血红蛋白疾病)是一组影响红细胞的疾病,源自血红蛋白分子结构的遗传确定的变化。在临床实验室,血红蛋白等电聚焦(IEF)和高性能液相色谱(HPLC)测试中将显示多种严重程度不同的血红蛋白疾病。影响范围从血红蛋白C疾病(HB CC)和C,β(β)丘脑贫血的轻度贫血到严重的疼痛发作,生长延迟,对感染的易感性增加以及镰状细胞病(血红蛋白SS)和SS,βThalalassamia的持续性贫血。血红蛋白病是以常染色体隐性模式遗传的。这些疾病之一的单个异常基因的载体被认为具有特征。具有性状的人将具有含有正常和异常血红蛋白的混合物的红细胞。大多数血红蛋白特征在正常生理状况下不会引起疾病或贫血*。(请参阅下面的FAB,FAS和特殊注意事项)。遗传:常染色体隐性估计发生率:1:400非裔美国人(病态疾病)1:2500所有种族和种族(病态疾病)新生儿表现:无通知方法:所有异常结果均被称为记录的提供者。接下来的步骤如果异常:恶心疾病 - 如果血红蛋白模式为FS,FSA,FSB,FSB,FSC,FSD,FSD,FSE,FSE,FSE,FSE,FSG,FSG,FSE或FSV,请参考儿科血液学家。向SC新生儿筛查计划报告所有后续发现。非助攻性疾病和/或丘脑贫血 - 请参阅儿科血液学家。向SC新生儿筛查计划报告所有后续发现。如果所有其他新生儿筛查结果都是正常的,则不需要重复的新生儿筛查标本。初始样本将发送到参考实验室进行血红蛋白确认。所有血红蛋白病和特征 - 将家庭转到镰状细胞基础,以进行家庭测试,教育和遗传咨询。
可根据需要使用发作和其他并发症,调整疾病的药物和输血。羟基脲是SCD预防的一线疗法,尤其是在镰状细胞贫血和镰状β-Zer-Zera-Zero thalassya中,因为它会减少疼痛发作和其他并发症。如果仍然无法控制该疾病,则可以将L-谷氨酰胺,Adakveo®(Crizanlizumab)和Oxbryta®(Voxelotor)等药物添加到羟基脲中。SCD的已知潜在疗法是骨髓移植。但是,寻找匹配的捐赠者的困难使此选项非常罕见,并且不能保证为所有人提供治疗。最近,在停止疾病进展并可能治愈疾病方面,基因疗法一直在显示出令人鼓舞的结果。在2023年12月,Casgevy™和Lyfgenia™Gene Therapies therapies therapies thee Therapies™获得了食品和药物管理局(FDA)的批准。
分子治疗的进步使得通过全身或局部给药进行基因编辑成为合理治疗遗传疾病的可行策略。将治疗剂封装在纳米颗粒中可以改善治疗剂的细胞内输送,前提是纳米颗粒能有效地被靶细胞吸收。在之前的工作中,我们已经建立了原理证明,即携带基因编辑试剂的纳米颗粒可以在胎儿和成年动物体内介导位点特异性基因编辑,从而改善啮齿动物 β-地中海贫血和囊性纤维化模型的功能性疾病。对纳米颗粒表面进行修饰以包括靶向分子(例如抗体)有望改善细胞吸收和特定细胞结合。