抽象背景抗塑性化学疗法在引起免疫原性死亡(ICD)时非常有效,从而诱导抗肿瘤免疫反应甚至消除肿瘤。然而,激活的胱天蛋白酶是大多数癌症化学治疗剂的标志,使凋亡在免疫学上保持沉默。它们是否对于化学疗法诱导的细胞死亡和体内细胞的凋亡清除率仍然难以捉摸。方法进行了基于理性细胞的抗癌药物库筛查,以探索在凋亡caspase抑制下的免疫原性凋亡途径和治疗靶标。基于这种筛选,caspase抑制在增强化学疗法诱导的抗肿瘤免疫力和作用机理方面的潜力通过各种细胞和小鼠模型研究了。结果热休克蛋白90(HSP90)抑制激活肿瘤细胞中的胱天蛋白酶,产生丰富的基因组和线粒体DNA片段,并导致细胞凋亡。同时,它劫持了caspase-9信号传导以抑制固有的DNA感应。Pharmacological blockade or genetic deletion of Caspase-9 causes tumor cells to secrete interferon (IFN)- β via tumor intrinsic mitochondrial DNA/the second messenger cyclic GMP–AMP (cGAS) /stimulator of interferon genes (STING) pathway without impairing Hsp90 inhibition-induced cell death.重要的是,CASPASE-9和HSP90抑制均可触发ICD,从而释放了许多损伤相关的分子模式,例如高摩动式组盒蛋白1,ATP和I型IFN和IFNS型IFN在体外和显着的抗肿瘤效应。此外,联合处理还通过上调编程的死亡配体1(PD-L1)来诱导适应性抗性。其他PD-L1阻滞可以进一步克服这种获得的免疫阻力并实现完全的肿瘤回归。结论caspase-9信号传导有选择地挑衅基于HSP90的化学疗法介导的肿瘤先天感应,从而导致CD8 + T细胞依赖性肿瘤控制。我们的发现暗示胱天冬酶途径的药理调节增加了化学疗法诱导的凋亡的肿瘤内在感应和免疫原性,
• 治疗期间的注意事项 • 关于癌症、其治疗和副作用的信息 • 安全 • 支持 • 您将在面对面的指导或第一天的治疗中收到一份信息包,可以带走
心脏毒性是癌症治疗过程中心脏收缩功能的降低。心血管疾病(CVD)是化学疗法毒性最常见的表现之一,这可能是由于癌症化学疗法对心脏功能和结构的直接影响所致,尤其是如果患者已经患有心血管危险因素[5,6]。蒽环类药物和靶向药物曲妥珠单抗经常用于治疗乳腺癌。蒽环类动物在许多有效的化学疗法方案的组成部分中起作用,用于新辅助,辅助和姑息治疗。与与癌症无关的对照组相比,对乳腺癌存活的患者的研究证实了患心血管疾病的风险增加。在乳腺癌后的患者中,患心血管疾病的风险大约高出约2.4倍。这些数据表明需要控制心血管疾病的危险因素,并制定策略以降低发生时与心血管疾病相关的死亡风险[7]。使用蒽环类药物和蒽环类 - trastuzumab的现代化学疗法的心脏毒性频率通常小于5%。蒽环类动物会导致心肌细胞具有特征性的超微结构变化,包括液泡变性和肌原纤维丧失[10,11]。
联合化疗可以治愈某些白血病和淋巴瘤,但大多数实体癌只能在早期治愈。我们回顾了定量原理,这些原理解释了在两种情况下联合使用独立有效的癌症疗法的好处。了解治愈性治疗(包括几十年前开发的治疗)背后的机制原理,对于改善未来的联合疗法非常有价值。我们讨论了联合疗法如何克服肿瘤异质性的长期存在但目前被忽视的想法的当代证据。我们表明,患者间和肿瘤内异质性的统一模型描述了儿童急性淋巴细胞白血病 (ALL) 治疗的历史进展,其中越来越密集的联合治疗方案最终实现了高治愈率。我们还描述了适用于不同生物尺度的药物独立性的三个不同方面。这些原理能够定量解释治愈性方案,这表明超加性(协同)药物相互作用不是成功的联合疗法所必需的。
摘要:在肿瘤学领域,纳米技术的大量改进为更好的诊断和治疗机会提供了支持,由于其物理和化学特性,金纳米粒子具有很高的适用性。我们对涉及在小鼠模型上使用金纳米粒子的研究进行了文献综述,重点关注载体的类型、化疗药物、靶肿瘤组织和结果。我们确定了 15 项符合我们搜索条件的研究,其中我们分析了合成方法、实验性癌症治疗中最常用的金纳米粒子化疗结合物,以及对肿瘤大小和系统毒性的改善影响。由于其固有特性,我们得出结论,金纳米粒子化疗结合物在实验性癌症治疗中很有前景,并且可能被证明是一种比当前替代方案更安全、更好的治疗选择。
摘要:癌症是全球主要死亡原因之一。尽管过去几十年癌症治疗方法取得了长足发展,但化疗仍然是癌症治疗的主要方法。根据作用机制,常用化疗药物可分为几类(抗代谢物、烷化剂、有丝分裂纺锤体抑制剂、拓扑异构酶抑制剂等)。多药耐药 (MDR) 是接受传统化疗或新型靶向药物治疗的癌症患者中 90% 以上死亡的原因。MDR 的机制包括外来化合物代谢增加、药物通量增强、生长因子、DNA 修复能力增强以及遗传因素(基因突变、扩增和表观遗传改变)。越来越多的生物医学研究集中于设计能够逃避或逆转 MDR 的化疗药物。本综述的目的不仅在于展示细胞对目前临床治疗中使用的抗癌药物产生耐药机制的最新数据,还在于介绍旨在克服这些耐药机制的新型潜在抗肿瘤药物的作用机制。更好地了解 MDR 机制和新型化疗药物的靶点应为未来有关癌症治疗新有效策略的研究提供指导。
乳腺癌 (BC) 是全球最常见的癌症类型之一,发病率和死亡率都很高。治疗方式包括全身治疗,其中化疗在许多情况下是主要组成部分。几种化疗药物联合使用或单独使用,不良事件发生的频率各不相同。这些事件可能是完成治疗方案的重大障碍。种系基因组变异被认为是化疗反应和副作用发展的潜在决定因素。一些药物基因组学研究旨在探索可用作生物标志物的种系变异,以预测 BC 化疗期间出现的毒性或不良事件。在这篇综述中,我们重新评估并总结了 BC 管理期间化疗毒性的药物基因组学研究的主要发现。此外,还强调了阻碍利用这些发现的缺陷和未来研究的潜在目标。毒性药物基因组学研究的主要不足之处来自研究设计、样本限制、所选基因的异质性、变异和毒性定义。随着高通量基因分型技术的出现,研究人员有望探索已识别的以及潜在的毒性和疗效遗传生物标记,以改善乳腺癌管理。然而,要实现这一点,应评估和避免以前工作的局限性,以获得更具决定性和可转化性的证据,用于个性化乳腺癌化疗。
图2 |正常和化学疗法暴露的血细胞中的突变负担和突变信号。a,正常(蓝色)年龄(年龄)的单个基本替代负担和四种化疗(红色)个体,具有最高的indel负担。盒子表示中位数和四分位间范围,晶须表示最小值和最大值,点代表外围值。蓝线代表了未暴露的个体突变负担的年龄的回归,其阴影为95%。b,如a中的数据描述,但y轴在2000个单碱基取代处被切断,以更好地可视化大多数数据。c,使用HDP从正常和化学疗法暴露的HSPC菌落的完整数据集中提取的突变特征和大量成熟血细胞亚群的双工测序。
监测甲氨蝶呤水平至关重要,因为延迟的甲氨蝶呤排泄可能是紧急情况。甲氨蝶呤水平每24小时监测,直到水平小于0.1 micromol/l。根据顾问的酌处权,较低的0.05目标可能更适合某些患者。甲氨蝶呤被肾脏消除。肾功能必须在治疗前评估。甲氨蝶呤从第三空间室缓慢退出(例如胸膜积液或腹水),导致长时间的末端血浆半衰期和意外的毒性。在第三空间积聚的患者中,建议在治疗前撤离液体并监测血浆甲氨蝶呤水平。葡萄糖酶。从HDMTX输注开始后的48至60小时内,它可以迅速降低甲氨蝶呤水平和早期给药至关重要,因为在此时间点以外,威胁生命的毒性可能无法预防。
