所有复杂数据分析都由数学模型驱动。因此,高级数学建模可以为高维数据带来新的见解。本文旨在介绍来自代数拓扑领域的数学理论,特别是神经定理。我将逐步证明这一重要结果,该结果在特定条件下保证了拓扑空间与其神经之间的同伦等价性。通过介绍计算方法 Mapper (17),我将说明神经定理的重要性。Mapper 是拓扑数据分析 (TDA) 领域的一个有用工具,它以单纯复形的形式从高维数据中提取和可视化特征。在本文的最后一章,我将介绍 TDA 和 Mapper 的两个生物医学应用。前面介绍的数学理论和计算方法的影响通过乳腺癌和糖尿病研究 (11; 17) 中的惊人发现变得清晰起来。
由于人口老龄化,青光眼的流行率是全球失明的第二大原因。在青光眼中,视神经和视网膜神经节细胞(RGC)的变性会导致视野缺陷和最终失明。升高的眼内压(IOP)是影响青光眼的最著名因素。然而,存在着青光眼的亚型,称为正常张力青光眼,与高IOP无关。最近的一项研究确定了涉及青光眼发病机理的各种因素,包括视网膜血流改变,谷氨酸神经毒性,氧化应激等(Shinozaki等,2024)。与年龄匹配的对照相比,青光眼患者可能表现出降低的神经营养因素,例如脑衍生的神经营养因子(BDNF)或睫状神经营养因子。研究表明,BDNF的眼内注射可以通过激活其高亲和力受体tromomyosin受体激酶B(TRKB)来挽救视神神经压伤小鼠模型(ONC)中的RGC。然而,配体依赖性激活的瞬时性质对该治疗的功效产生了限制。我们已经开发了多个系统,
尽管当前的围产期护理有所改善,但中枢神经系统(CNS)的围产期病变的高发病率仍然存在。[1]围产期缺氧是妊娠和分娩的常见并发症,这是新生儿中枢神经系统损害的重要原因,导致严重的长期神经系统并发症。神经缺陷(ND)范围从轻度的行为障碍到脑瘫,癫痫,智力低下等。[2]除了评估神经细胞的功能活性外,对神经营养蛋白(NTS)的参与评估其营养供应非常重要。[3]几种神经营养蛋白在中央和周围神经系统中具有多功能作用。[4]这些神经营养因素是周围和中枢神经系统神经元发育,增殖,分化和成熟的重要调节剂。[5]实验动物模型表明,这些神经营养蛋白可以有效地恢复脑缺血后的神经元细胞,[6]
猴子中的电生理研究表明,手指截肢会触发局部重塑,内部的原发性体感皮质(S1)。人类神经影像学研究表明,即使在截肢后数十年,也表明了缺失手指的持续代表。在这里,我们探讨了这种明显的矛盾是否源于低估手部图中手指的分布的外围和中心表示。使用药理学单指神经阻滞和7-Tesla神经影像学,我们首先复制了局部S1重新映射的先前帐户(电生理和其他)。局部阻塞还触发了整个手部区域的活动的活动变化。使用利用指定代表重叠的方法,我们还表明,尽管输入损失,但被阻塞的手指表示仍然持久。计算建模表明,局部稳定性和全局重组都是由地形图基础的分布处理以及稳态机制结合的。我们的发现揭示了复杂的指代代表性特征,这些特征在大脑(RE)组织,超越(RE)映射中起着关键作用。
长期以来,人们一直认为迷走神经可以促进肠道微生物组(生活在肠道中的微生物社区)之间的交流,而大脑的直接证据是有限的。詹姆森(Jameson)领导的研究人员观察到,与患有正常肠道肠道微生物组的小鼠相比,没有任何肠道细菌(称为无菌小鼠)的小鼠在迷走神经中表现出明显较低的活性。值得注意的是,当将这些无菌小鼠引入正常小鼠的肠道细菌时,它们的迷走神经活性增加到正常水平。
猴子中的电生理研究表明,手指截肢会触发局部重塑,内部的原发性体感皮质(S1)。人类神经影像学研究表明,即使在截肢后数十年,也表明了缺失手指的持续代表。在这里,我们探讨了这种明显的矛盾是否源于低估手部图中手指的分布的外围和中心表示。使用药理学单指神经阻滞和7-Tesla神经影像学,我们首先复制了局部S1重新映射的先前帐户(电生理和其他)。局部阻塞还触发了整个手部区域的活动的活动变化。使用利用指定代表重叠的方法,我们还表明,尽管输入损失,但被阻塞的手指表示仍然持久。计算建模表明,局部稳定性和全局重组都是由地形图基础的分布处理以及稳态机制结合的。我们的发现揭示了复杂的指代代表性特征,这些特征在大脑(RE)组织,超越(RE)映射中起着关键作用。
随机跨界双盲研究设计。经过三天的饮食控制,参与者在试验当天的下午到达实验室,以安静的状态收集唾液样本,并配备了心率监测器。参与者以3 mg/kg的体重(CAF试验)咀嚼含咖啡因的口香糖或含含咖啡因(PL试验)的安慰剂的参与者10分钟,然后将其吐出。参与者然后接受了15分钟的动态热身。在热身结束时,参与者进行了2轮特定于摔跤的模拟比赛,并记录了模拟比赛中的跌倒数量。模拟匹配后,再次从参与者那里收集唾液样本。分析唾液样品的咖啡因α-淀粉酶浓度。两个试验之间的差异
我们提出了一种用于电刺激周围神经的无线、完全可植入设备,该设备由供电线圈、调谐网络、齐纳二极管、可选刺激参数和刺激器 IC 组成,全部封装在生物相容性硅胶中。13.56 MHz 的无线射频信号通过片上整流器为植入物供电。ASIC 采用台积电的 180 nm MS RF G 工艺设计,占地面积不到 1.2 平方毫米。该 IC 通过片上只读存储器实现外部可选的电流控制刺激,具有 32 个刺激参数(90 – 750 μA 幅度、100 μs 或 1 ms 脉冲宽度、15 或 50 Hz 频率)。IC 使用 8 位二进制加权 DAC 和 H 桥生成恒定电流波形。在最耗电的刺激参数下,刺激脉冲期间的平均功耗为 2.6 mW,电能传输效率约为 5.2%。除了台式和急性测试外,我们还在两只大鼠的坐骨神经上长期植入了两种版本的设备(一种是带导线的设计和一种是无导线的设计),以验证 IC 和整个系统的长期疗效。无导线设备的尺寸如下:高 0.45 厘米,长轴 1.85 厘米,短轴 1.34 厘米,带导线的设备尺寸类似
在2010年,研究人员在高迷走神经,积极的情绪和良好的身体健康之间发现了积极的反馈回路。换句话说,您增加迷走神经的语调越多,您的身心健康就越会改善,反之亦然(5)。“迷走神经响应减轻了压力。它降低了我们的心率和血压。它改变了大脑某些部位的功能,刺激消化,当我们放松时发生的所有事情。” - 克利夫兰诊所医学主任Mladen Golubic博士