我们将全面搜索从2023年10月1日发表的研究,使用包括Web of Science,Embase,Cochrane图书馆,PubMed,AMED,Wanfang数据库,中国国家知识基础设施和中国生物医学文学数据库等各种数据库。同时,我们还将搜索WHO国际临床试验登记平台,中国临床试验登记平台和临床试验。灰色文献将使用Google Scholar和OpenGrey.edu检索。仅包括中文和英语的随机对照试验,而没有限制出版状态。主要结果将包括症状评分的改变,神经传导速度的变化。额外的外观将包括生活质量,疼痛的变化,禁食后的血糖水平和进食后2小时,糖基化的血红蛋白水平以及与光生物调节疗法相关的任何不良事件。Reman v.5.4和R语言将用于元分析。对潜在偏见的评估将通过偏见2
仅用于研究使用。不适用于诊断程序。©2022,2024 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。eppendorf是Eppendorf AG的商标。agilent,Tapestation和Screentape是Agilent Technologies,Inc。Taqman是Roche Molecular Systems,Inc。的商标。APN-8148723 0724
抽象的客观周围神经刺激(PNS)是一种新兴的神经调节方式,但仍有有限的数据突出显示其长期有效性。这项研究的目的是报告临时和永久性PNS后疼痛和永久性PN的疼痛强度和阿片类药物消耗的现实数据,以期在植入后长达24个月。方法对所有在2014年1月1日至2022年2月24日之间在多中心企业中接受PNS植入物的患者进行了回顾性研究。两个共同结果是:(1)疼痛强度(11点数值评级量表)从基线到植入后12个月的变化; (2)比较植入植物后12个月临时PNS队列之间疼痛强度的变化。结果包括126例患者。疼痛强度在整个队列中12个月后显着降低(平均差异(MD)-3.0(95%CI -3.5至-2.4),p <0.0001)。在临时和永久性PNS队列(MD 0.0(95%CI -1.1至1.0)之间,这种降低没有明显差异,植入后12个月。疼痛强度在所有次要时间点(3、6和24个月)的总体,临时和永久队列的疼痛强度显着降低。在整个队列中6个月和12个月后,每天的阿片类药物消耗没有变化。结论本研究发现,暂时和永久性PN可能有效地减少植入后24个月的慢性疼痛患者的疼痛强度,尽管未观察到阿片类药物消耗的变化。接受临时植入物与永久性植入物的患者之间的疼痛强度降低是可比的,这强调了临时PNS可能具有持久的临床益处。然而,鉴于随访的大量损失,需要进一步的大规模研究来巩固有关PNS功效的结论。
遗传性周围神经病(IPN)是一组与各种基因突变有关的疾病,在周围神经的发育和功能中具有基本作用。在过去的十年中,从细胞生物学研究和转基因型和啮齿动物模型中获得的轴突和髓磷脂变性的分子疾病机制方面的显着进步促进了有前途的治疗策略的发展。但是,迄今为止尚无临床治疗。这种缺乏治疗表明,迫切需要在生物学和临床上相关的模型概括IPN。对于神经发育和神经退行性疾病,患者特异性诱导的多能干细胞(IPSC)是疾病建模和临床前研究的特别强大的平台。在这篇综述中,我们提供了有关不同体外人类细胞IPN模型的更新,包括传统的二维单一培养IPSC衍生物,以及使用微流体芯片,器官和组装的更复杂的基于人IPSC的系统的最新进展。
摘要外周神经损伤(PNI)代表了严重的临床和公共卫生问题,因为它的自发恢复较差,自发恢复不良。与自体移植相比,自体移植仍然是诊所中长距离周围神经缺陷的最佳实践,使用基于聚合物的生物降解神经引导导管(NGC)的使用一直在获得动量,替代了指导严重PNI的维修而无需进行次级手术和供体培训和供体的养蜂组织。然而,简单的空心圆柱管几乎不能超过再生效率的自体移植,尤其是在关键尺寸的PNI中。随着组织工程技术和材料科学的快速发展,在过去几十年中,已经出现了各种功能化的NGC来增强神经再生。从脚手架设计方面的方面,特别关注可生物降解的聚合物,本综述旨在通过解决生物材料选择,结构性设计和制造技术的繁重需求来总结NGC的最新进展,从而对生物兼容,范围造成的范围,机械效率和机械效率,工业效率,机械效率,工业效率,工业效率,工业效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,释放,效益,机械效率,机械效率,释放效率,工业效率,工业效率,既定效率NGC的神经再生潜力。此外,比较并讨论了几种市售的NGC及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的NGC的未来设计提供灵感,这些设计可以完全治愈长距离外围神经缺陷。
de Backer朱莉2021年的成员或政治,倡导或心脏病学领域的患者组织的成员或隶属关系。ESC倡导委员会2022年在心脏病学领域工作的政治或倡导团体的成员或隶属关系。Vascern的成员(欧洲稀有多重性血管疾病的参考网络,任何其他兴趣(财务或其他兴趣),应宣布为担任ESC的位置。Clingen成员的蒙塔尔科诺主动脉联盟2023年的成员来自公共和/或非营利组织正在进行的研究资金(该组织始于2023年或始于2023年)。此信息不是强制性的,也不会影响一个人加入ESC活动的能力Baillet Latour资金用于科学研究法兰德斯特殊研究基金Ghent University
肿瘤中的体细胞突变的一部分会产生新的t细胞反应,该反应旨在靶向MHC I- NeoEpitope复合物在肿瘤细胞上,从而介导肿瘤控制或排斥。尽管新发表型对癌症免疫的中心性令人信服,但我们对什么构成的新皮象可以在体内介导肿瘤控制,以及什么区别于绝大多数类似的候选人新EPITOPE的新EPITOPE,这对新生儿的肿瘤进行了介绍,我们对什么知之甚少。在小鼠和临床试验中进行的研究已经开始揭示该领域的意外悖论。 因为癌症的新皮肤跨越了自我和非自我之间的模棱两可的基础,所以某些规则对坦率的非自身抗原(例如病毒或模型抗原)的免疫学为基础,似乎不适用于新皮菌。 由于新皮上与自我介绍如此相似,只有小变化使它们非自我,因此对它们的免疫反应至少部分地调节了对自我的免疫反应的方式。 因此,在这里通过澄清的胸膜选择的镜头来查看和理解新发表。 在这里,批判性地讨论了新皮标的生物学和临床应用中的紧急问题,并提出了一种机械和可检验的框架,该框架解释了这些奇妙抗原的复杂性和转化潜力。在小鼠和临床试验中进行的研究已经开始揭示该领域的意外悖论。因为癌症的新皮肤跨越了自我和非自我之间的模棱两可的基础,所以某些规则对坦率的非自身抗原(例如病毒或模型抗原)的免疫学为基础,似乎不适用于新皮菌。由于新皮上与自我介绍如此相似,只有小变化使它们非自我,因此对它们的免疫反应至少部分地调节了对自我的免疫反应的方式。因此,在这里通过澄清的胸膜选择的镜头来查看和理解新发表。在这里,批判性地讨论了新皮标的生物学和临床应用中的紧急问题,并提出了一种机械和可检验的框架,该框架解释了这些奇妙抗原的复杂性和转化潜力。
摘要肠道菌群负责人类健康中的重要功能。已经描述了肠道菌群与其他器官之间通过神经,内分泌和免疫途径之间的几个通信轴,并且肠道菌群组成的扰动与新兴疾病数量的发作和进展有关。在这里,我们分析了周围根神经节(DRG)和新生儿和年轻小鼠的骨骼肌肉,具有以下肠道菌群状态:a)无细菌(a)gnotobirotic,gnotobirotic,gnotobirotic s gnotobirotic seplatigy complatial gnotobirotic,用12个特定的肠道细菌菌株(Oligobiobiot)选择性地定居微生物群(CGM)。立体和形态计量学分析表明,肠道菌群的缺失会损害体细胞中间神经的发展,从而导致直径较小和甲基化轴突,以及较小的无叶子纤维。因此,DRG和坐骨神经转录组分析强调了一组差异表达的发育和髓鞘基因。有趣的是,Neuregulin1(NRG1)的III型同工型(已知是Schwann细胞髓鞘化至关重要的神经元信号)在年轻的成年GF小鼠中过表达,因此,转录因子早期生长反应2(EGR2)的表达,是由Schwann细胞表达的,由Schwann细胞表达的基本基因在Myelination Onserination Onserations of Myelination of Myelination of Myelination。最后,GF状态导致组织学萎缩性骨骼肌,神经肌肉连接的形成受损以及相关基因的失调表达。总而言之,我们首次证明了肠道微生物群调节对躯体周围神经系统的适当发展及其与骨骼肌的功能联系,从而表明存在一种新颖的“肠道微生物群 - 外周神经系统轴”。
摘要 遗传性周围神经病 (IPN) 包括一组临床和遗传上异质性的疾病,这些疾病会导致周围自主神经、运动神经和/或感觉神经的长度依赖性退化。尽管对 100 多个已知相关基因的致病变异进行了金标准诊断测试,但许多 IPN 患者的遗传问题仍未得到解决。为患者提供诊断对于减少他们的“诊断之旅”、改善临床护理和提供明智的遗传咨询至关重要。在过去十年的大规模并行测序技术中,新描述的导致 IPN 发病的 IPN 相关基因变异数量迅速增加。然而,由于缺乏支持潜在新基因变异的其他家族和功能数据,延长了患者的诊断不确定性,并导致 IPN 的遗传性缺失。我们回顾了过去十年的 IPN 疾病基因发现,以强调导致 IPN 发病的新基因、结构变异和短串联重复扩增。根据所学到的经验教训,我们在预测未来的同时提供了对 IPN 研究的愿景,并提供了我们提出的将加快未解决的 IPN 家族的基因诊断的新兴技术、资源和工具的示例。
摘要“茎”的概念结合了调节未分化原始细胞的典型的无限自我再生潜力的分子机制。这些细胞具有导航细胞周期,进出静态G0相的独特能力,并保持产生多种细胞表型的能力。干细胞作为具有非凡再生能力的未分化前体,在整个人体中表现出异质性和组织特异性分布。对各种组织中不同干细胞种群的识别和表征彻底改变了我们对组织稳态和再生的理解。从造血到神经和肌肉骨骼系统,组织特异性干细胞的存在强调了多细胞生物的复杂适应性。最近的研究表明,主要在骨髓和其他基质组织内,有多种非脊髓性干细胞(非HSC)以及造血干细胞(HSC)的群体。在这些非HSC中,一个罕见的子集具有多能特征。在体外和体内研究表明,这些假定的干细胞的显着分化潜力,包括各种名称,包括多功能成年祖细胞(MAPC),骨髓分离的成年成人多琳多诱导细胞(迈阿密),小血液干细胞(SBSC),很小的胚胎样细胞(vsels),非常小的干细胞(VSELS)和多重依赖(Muse)和多个依赖(Muse)。关键字干细胞,缪斯细胞,VSEL,SBSC,迈阿密细胞,MAPC,多能分配给这些原始干细胞种群的多种命名词可能来自不同的起源或不同的实验方法。本综述旨在提出对源自基质组织的多能/多能干细胞各种亚群的综合比较。通过分析与这些人群相关的隔离技术和表面标记表达,我们的目的是描述基质组织衍生的干细胞之间的相似性和区别。了解这些组织特异性干细胞的细微差别对于释放其治疗潜力和推进再生医学至关重要。干细胞研究的未来应优先考虑共享实验室环境中方法论和协作研究的标准化。这种方法可以减轻研究结果的变异性,并促进科学伙伴关系,以充分利用多能干细胞的治疗潜力。
