我们报告了一种与治疗相关的脊髓增生综合征(MDS)的病例,该病例在自体外周血干细胞移植(PBSCT)对周围T细胞淋巴瘤(pBSCT)发生后9年,未另外指定(PTCL-NOS)。一名65岁的男性被诊断出患有PTCL-NOS。在6个循环(环磷酰胺[CPA],阿霉素,长春新碱和泼尼松)方案后,他获得了第一个完全反应(CR)。他复发了33个月后,并接受了救助化学疗法,由Chase方案(CPA,高剂量细胞甲滨,地塞米松和依托泊苷)组成。在Chase第一个循环的恢复阶段,将其外周血干细胞(PBSC)收集并在2个袋子中冷冻。在Chase 2赛道后,他接受了自体PBSCT,其中涉及使用LEED预处理方案(Melphalan,CPA,Etoposide和Dexamethasone)和一个冷冻的袋子。这导致了第二个Cr。PBSCT 39个月后,他的右臂肿瘤复发。切除后,他获得了八个周期的brentuximab vedotin和45 Gy的涉及场辐射,并同时获得了第三个CR。自体PBSCT九年后,他被诊断出患有过量爆炸2(MDS-EB-2)的MDS。他的疾病经过两种偶然的治疗后,他的疾病发展为急性髓样白血病。他成功接受了第二个自动PBSCT,其中涉及Busulfan和Melphalan预处理方案以及其他储存9年的冷冻袋。自第二个自体PBSCT以来,他已经完全处于细胞遗传学缓解1年。
ALS患者的,包括反应性小胶质细胞和星形胶质细胞激活(Liu and Wang,2017)。 使用[11C] -PBR28的PET成像也证实了前心和中心回的神经炎症和神经胶质激活,这是受ALS影响的大脑区域(Zurcher等,2015)。 人们认为,ALS中的中央免疫系统(CIS)和外周免疫系统(PIS)之间存在串扰,但尚未充分解释(Liu等,2020)。 研究表明,周围免疫细胞迁移到中心,导致炎症发生。 循环免疫细胞,免疫蛋白和细胞因子都参与ALS(Appel等,2021)。 ALS患者外周血中的总白细胞计数升高,T细胞激活增加(Murdock等,2017)。 t细胞是通过识别主要组织相容性复合物(MHC)通过T细胞受体(TCR)呈现的抗原的主要参与者(Murdock等,2017)。 通常认为,在ALS的外周免疫中受损Treg细胞,并且在周围也会减少树突状细胞(Rusconi等,2017)。 然而,CD4 + T和CD8 + T细胞都是有争议的,一些研究发现CD4 + T细胞增加了,ALS中的CD8 + T细胞减少了,而其他研究则发现了相反的情况(Chen等,2014)。,包括反应性小胶质细胞和星形胶质细胞激活(Liu and Wang,2017)。使用[11C] -PBR28的PET成像也证实了前心和中心回的神经炎症和神经胶质激活,这是受ALS影响的大脑区域(Zurcher等,2015)。人们认为,ALS中的中央免疫系统(CIS)和外周免疫系统(PIS)之间存在串扰,但尚未充分解释(Liu等,2020)。研究表明,周围免疫细胞迁移到中心,导致炎症发生。循环免疫细胞,免疫蛋白和细胞因子都参与ALS(Appel等,2021)。ALS患者外周血中的总白细胞计数升高,T细胞激活增加(Murdock等,2017)。t细胞是通过识别主要组织相容性复合物(MHC)通过T细胞受体(TCR)呈现的抗原的主要参与者(Murdock等,2017)。通常认为,在ALS的外周免疫中受损Treg细胞,并且在周围也会减少树突状细胞(Rusconi等,2017)。然而,CD4 + T和CD8 + T细胞都是有争议的,一些研究发现CD4 + T细胞增加了,ALS中的CD8 + T细胞减少了,而其他研究则发现了相反的情况(Chen等,2014)。
中风发作后可以观察到病变部位内过度的免疫激活。脑实质内的这种神经蛋白浮肿代表了先天的免疫反应,以及外周和驻留的免疫细胞之间其他相互作用的结果。累积研究表明,缺血性中风的病理过程与居民和外周免疫有关。脑实质内周围免疫细胞的内部效果隐含导致继发性脑损伤。因此,有必要更好地了解居民和外周免疫反应对缺血性侮辱的作用。在这篇综述中,我们总结了中风发作后的全身免疫力和居民免疫之间的相互作用,并讨论了各种潜在的免疫治疗策略。
di效率,结构和功能性神经影像学方法的出现使主要的多站点效应能够映射人类连接组,该连接组被定义为包含中枢神经系统中的所有神经连接(CNS)。然而,这些效果并未结构用于检查周围神经系统(PNS)的丰富性和复杂性,这可以说是构成(被忽视的)连接组的其余部分。尽管对脊髓(SC)和PN的地图集的兴趣越来越高,这些地图集同时是立体定向,互动性,可电子脱离,可扩展性,基于人群和可变形的,但迄今为止很少关注这一至关重要的任务。尽管如此,这些完整的神经结构的地位对于神经外科计划,神经系统定位以及映射位于中枢神经系统外的人类连接组的成分至关重要。在这里,我们建议对人类连接组的定义进行修改,以包括SC和PNS,并主张创建包容性的地图集,以补充当前的电视效果,以绘制大脑的人类连接组,以增强临床教育,并在神经科学研究中有助于进步。在提供有关现有神经影像学技术,图像处理方法和算法进步的批判性概述中,可以结合起来,以创建完整的连接组,我们概述了一个蓝图,以最终映射整个人类神经系统,从而绘制整个人类神经系统,从而使我们的科学联系起来,以弥补我们的科学联系。
摘要外周神经损伤(PNI)代表了严重的临床和公共卫生问题,因为它的自发恢复较差,自发恢复不良。与自体移植相比,自体移植仍然是诊所中长距离周围神经缺陷的最佳实践,使用基于聚合物的生物降解神经引导导管(NGC)的使用一直在获得动量,替代了指导严重PNI的维修而无需进行次级手术和供体培训和供体的养蜂组织。然而,简单的空心圆柱管几乎不能超过再生效率的自体移植,尤其是在关键尺寸的PNI中。随着组织工程技术和材料科学的快速发展,在过去几十年中,已经出现了各种功能化的NGC来增强神经再生。从脚手架设计方面的方面,特别关注可生物降解的聚合物,本综述旨在通过解决生物材料选择,结构性设计和制造技术的繁重需求来总结NGC的最新进展,从而对生物兼容,范围造成的范围,机械效率和机械效率,工业效率,机械效率,工业效率,工业效率,工业效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,释放,效益,机械效率,机械效率,释放效率,工业效率,工业效率,既定效率NGC的神经再生潜力。此外,比较并讨论了几种市售的NGC及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的NGC的未来设计提供灵感,这些设计可以完全治愈长距离外围神经缺陷。
周围神经系统可以看作是一个庞大的神经元网络,该神经元网络向整个人体发出信号。实际上,如[1]所示,“周围神经系统(PNS)中的所有信息流沿轴突沿轴突传输,称为动作电位”。但是,由于神经损伤,可以预防这种神经信号或动作电位的普通传导。在这种情况下,将信息准确地传递到有机体内的预期目的地或部分。诚然,可以理解,物理疗法对在周围神经系统的受损部分中恢复正确的功能非常有帮助。然而,由于人体在人体内部的成就仍然很难形象化神经活动。模拟神经系统将提供一个平台,以可视化系统的工作原理以及受损的神经如何影响PN。的确,这项研究的目的是模拟一个虚拟网络,该虚拟网络显示了人类周围神经系统的一般拓扑,例如,模拟了人类手臂的神经结构和行为),该网络显示了如何将信号路由到其正确的目的地并展示其系统中的模拟生物神经损害。
癌症免疫疗法已成为治疗各种恶性肿瘤的突破性进展。ICI 靶向 PD-1/PD-L1 和 CTLA-4 通路,通过阻断抑制信号、激活 T 细胞和重振抗肿瘤免疫反应发挥作用。然而,通过增强宿主的免疫反应和破坏免疫稳态,ICI 可促进炎症活动,可能导致多个器官的炎症相关损害 ( 1 )。这表现为一系列临床症状,统称为 irAE,通常影响各种器官系统,包括皮肤、内分泌、呼吸和胃肠系统 ( 2 )。irAE 的发病率相对较高,某些严重并发症会显著影响患者的生活质量和预后 ( 3 )。有效管理 irAE 而不损害 ICI 的抗肿瘤效果或患者的长期生存率仍然是一项临床挑战 ( 4 )。值得注意的是,发生 irAE 的患者通常会获得更好的癌症治疗结果(5-7)。因此,提前评估个人毒性风险至关重要,因为早期干预和管理 irAE 可以帮助确保高风险患者继续接受 ICI 治疗并从中受益。
摘要 — 本文介绍了带有高级外设总线 (APB) 接口的串行外设接口 (SPI) IP 核的模型和设计。SPI 是摩托罗拉开发的一种串行通信总线串行协议,已成为事实上的标准。一个系统可以有多个集成电路从机,但在任何给定时间只能有一个主机。因此,在本研究中,SPI 由 Verilog 代码建模,并在设计的早期阶段使用 ModelSim 和 Quartus Prime Lite Edition 16.0 进行仿真和综合。而 Synopsys Tools 即设计编译器被用作设计的主要综合。SPI 接口设计用于从单个从机发送或接收数据,高效的 APB-SPI 控制器具有灵活的数据宽度和频率,最高频率为 16 MHz。SPI 的模式在本研究中也发挥着作用,该协议可以运行四种模式,对应四种可能的时钟配置。结果表明,SPI 核心已成功建模为模式 0、1、2 和 3。此外,这些模式的模拟最大工作频率为 16 MHz,并且在所有四种时钟模式下都具有灵活性。本工作的 ASIC 设计采用 Silterra 0.18μm CMOS 工艺,消耗 27750 μm 2 和 47.12μW。
摘要 — 皮层内脑机接口 (iBCI) 为瘫痪患者提供了一种通过从大脑活动解码的信号来控制设备的方法。尽管这些设备最近取得了令人瞩目的进展,但它们的控制水平仍然无法达到健全人的水平。为了实现自然控制并提高神经假体的性能,iBCI 可能需要包含本体感受反馈。为了通过机械触觉刺激提供本体感受反馈,我们旨在了解触觉刺激如何影响运动皮层神经元并最终影响 iBCI 控制。我们为四肢瘫痪患者的后颈提供了皮肤剪切触觉刺激来替代本体感受。通过使用单丝测试套件评估触觉灵敏度来确定颈部位置。参与者能够以 65% 的准确率正确报告 8 个不同方向的后颈皮肤剪切。我们发现运动皮层单元对剪切刺激表现出感觉反应,其中一些单元对刺激有强烈的响应,并可以通过余弦形函数很好地建模。我们还演示了在线 iBCI 光标控制,该控制由解码的命令信号驱动,并带有连续的皮肤剪切反馈。与纯视觉反馈条件相比,当参与者获得触觉反馈时,光标控制性能略有提高,但效果显著。
摘要 — 皮层内脑机接口 (iBCI) 为瘫痪患者提供了一种通过从大脑活动解码的信号来控制设备的方法。尽管这些设备最近取得了令人瞩目的进展,但它们的控制水平仍然无法达到健全人的水平。为了实现自然控制并提高神经假体的性能,iBCI 可能需要包含本体感受反馈。为了通过机械触觉刺激提供本体感受反馈,我们旨在了解触觉刺激如何影响运动皮层神经元并最终影响 iBCI 控制。我们为四肢瘫痪患者的后颈提供了皮肤剪切触觉刺激来替代本体感受。通过使用单丝测试套件评估触觉灵敏度来确定颈部位置。参与者能够以 65% 的准确率正确报告 8 个不同方向的后颈皮肤剪切。我们发现运动皮层单元对剪切刺激表现出感觉反应,其中一些单元对刺激有强烈的响应,并可以通过余弦形函数很好地建模。我们还演示了在线 iBCI 光标控制,该控制由解码的命令信号驱动,并带有连续的皮肤剪切反馈。与纯视觉反馈条件相比,当参与者获得触觉反馈时,光标控制性能略有提高,但效果显著。