量子信号处理(QSP)是一个框架,被证明可以统一和简化大量已知的量子算法,并发现新的算法。QSP允许人们使用多项式转换嵌入给定单位中的信号。表征可以通过QSP协议来实现哪些多项式是该技术功能的重要组成部分,尽管在单变量信号的情况下,这种表征既可以理解,却尚不清楚当信号是矢量时,可以构建哪些多元多样性,而不是标量。这项工作使用了与文献中的形式略有不同的形式主义,并利用它来找到可分解性的更简单条件以及足够的条件 - 首先是我们所知的最好的条件,这是在量子信号处理中(通常是不均匀的)多变量多态度证明的。
摘要 使用 Mermin 多项式可以检测量子系统的非局域性和由此产生的纠缠。这为我们提供了一种研究量子算法执行过程中非局域性演变的方法。我们首先考虑 Grover 的量子搜索算法,注意到在算法执行过程中,当接近预定状态时,状态的纠缠度达到最大值,这使我们能够搜索单个最优 Mermin 算子,并在整个 Grover 算法执行过程中使用它来评估非局域性。然后还使用 Mermin 多项式研究量子傅里叶变换。在每个执行步骤中搜索不同的最优 Mermin 算子,因为在这种情况下没有任何迹象表明我们能够找到最大程度地违反 Mermin 不等式的预定状态。将量子傅里叶变换的结果与之前使用凯莱超行列式进行纠缠研究的结果进行了比较。由于我们提供的是结构化且有文档记录的开源代码,因此所有的计算都可以重复。
– 我们引入了一种量子编程语言,名为 foq ,其中包含一阶递归程序。foq 程序的输入包括一组排序的量子比特,即一列成对不同的量子比特索引。foq 程序可以将对应于一元酉算子的基本算子应用于其每个量子比特。所考虑的算子集已根据 [17] 进行选择,以形成一组通用门。 – 在证明终止 foq 程序是可逆的(定理 1)之后,我们将程序限制为一个严格子集,名为 pfoq ,多项式时间为 foq 。对 pfoq 程序的限制是可处理的(即可以在多项式时间内确定,参见定理 2),确保程序在任何输入时终止(引理 1),并防止程序出现任何指数爆炸(引理 2)。 – 我们证明,对于量子复杂度类 fbqp 而言,pfoq 程序计算的函数类是健全且完备的。fbqp 是有界误差量子多项式时间的函数扩展,称为 bqp [ 3 ],这是一类决策问题,量子计算机可以在多项式时间内解决,错误概率最多为 1
许多研究人员都研究了这些特殊矩阵,涉及递归序列,例如斐波那契,卢卡斯,佩尔,平衡数字等。在过去的几十年中,但研究人员仍然非常感兴趣。例如,Akbulak和Bozkurt [1]获得了Toeplitz矩阵的规范,并带有斐波那契和卢卡斯号的条目。然后S。Shen [19]和A.daäSdemir[6]分别将这项研究扩展到K-fibonacci和K-lucas数量,以及Pell和Pell-lucas数量。另外,Solak和Bahsi [20]获得了涉及斐波那契和卢卡斯数的汉克尔矩阵的光谱规范的规范和边界。这项研究已扩展到其他数字序列,可以看到[3,9,10,15,21,22,24]。这些类型的特殊矩阵在各个领域都有广泛的应用,例如图像处理,振动分析,加密等。[14,16,23]。
背景:表征量子网络相关性对于发现和定量评估基于量子非局域性的网络协议至关重要。执行此任务的少数已知工具称为量子膨胀层次结构 [ 1 ] 及其变体,效率低下:由于它们需要引入量子网络元素的多个副本,因此它们很快就会变得难以计算,并且在实践中只能解决最基本的网络,即使在那里也只能取得有限的成功。此外,它们最终的收敛是一个悬而未决的问题,除了数值极限之外,它们可能具有未知的基本极限 [ 2 ]。由于量子理论的数学形式,这些工具本质上与非交换多项式优化相关 [ 3 ]。它们改编自著名的 Navascu´es-Pironio-Ac´ın (NPA) 层次结构 [ 4 ],该层次结构可以通过任意好的层次结构(以增加计算复杂度为代价)来表征单个量子源相关性,这些边界被表述为可以通过数值求解的半正定程序。
给定种和关系,完成给出通用 C*-代数 从所有 𝜌 𝑛 中,获取 C* 代数上的状态 𝜌 实现 𝑝(𝑎, 𝑏|𝑥, 𝑦) GNS 构造给出交换算子量子模型。
1。V. H. Almendra-Hernández,G。Ambrus和M. Kendall,通过稀疏近似,离散计算的定量Helly-type定理。GEOM。70(2022),1707。https://doi.org/10.1007/S00454-022–00441–5 2。I.Bárány和A. Heppes,在平面定量定理的确切常数上,离散计算。GEOM。12(1994),否。4,387–398。3。I.Bárány,M。Katchalski和J. Pach,定量的Helly-type定理,Proc。Amer。 数学。 Soc。 86(1982),否。 1,109–114。 4。 K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。 154,剑桥大学出版社,剑桥,2004年。 5。 K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。 伦敦数学。 Soc。 41(2009),否。 5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。Amer。数学。Soc。86(1982),否。1,109–114。4。K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。 154,剑桥大学出版社,剑桥,2004年。 5。 K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。 伦敦数学。 Soc。 41(2009),否。 5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。154,剑桥大学出版社,剑桥,2004年。5。K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。伦敦数学。Soc。41(2009),否。5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。5,853–858。6。P。黄铜,在平面中的定量Steinitz定理上,离散计算。GEOM。17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。17(1997),否。1,111–117。7。C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。1,193–217。https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。https://doi.org/10。1007/bf03014795 8。J.A.de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。GEOM。57(2017),第1期。2,318–334。9。G. Ivanov和M.Naszódi,一种定量的Helly-type定理:Hyothet中的遏制,Siam J.离散数学。36(2022),否。2,951–957。10。D. Kirkpatrick,B。Mishra和C.-K。 YAP,定量Steinitz的定理,并应用了多方面抓握,离散计算的应用。GEOM。7(1992),否。3,295–318。11。E. Steinitz,Bedingt Konvergente Reihen und Konvexe Systeme,J。ReineAngew。 数学。 143(1913),128-176。E. Steinitz,Bedingt Konvergente Reihen und Konvexe Systeme,J。ReineAngew。数学。143(1913),128-176。143(1913),128-176。
马尔可夫链蒙特卡洛(MCMC)方法的实现需要面对两个有趣的挑战:准确表示先验信息和可能性功能的效果。通常可以通过标准减少维度降低技术(例如主成分分析(PCA))来促进先前分布的定义和采样。此外,基于PCA的分解可以基于多项式混沌扩展(PCE)实现准确的替代模型。wever,具有鲜明对比的内在地质先验可能需要先进的维度减少技术,例如深生成模型(DGM)。尽管适用于先前的抽样,但这些DGM对替代建模构成了挑战。在此贡献中,我们提出了一种MCMC策略,该策略将DGM的高重建性能以变量自动编码器的形式与PCA – PCE替代建模的准确性相结合。此外,我们还引入了一个具有物理信息的PCA分解,以提高准确性并减少与替代建模相关的综合负担。在使用通道的子表面结构的贝叶斯地面雷达旅行时间断层扫描的背景下,我们的方法是例证的,提供了准确的重建和显着的加速速度,尤其是当全相正向模型的计算计算时。
这项研究首先介绍了高斯莱昂纳多多项式序列。我们获得此序列的基本属性,例如生成函数,Binet的公式,矩阵形式。此外,我们使用Leonardo编号研究了编码端解码方法。最后,我们检查了向接收器发送不正确的错误检测和校正。参考文献[1] Bacaer,N。,《数学种群动力学的简短历史》,Springer-Verlag,伦敦,2011年。[2] Horadam,A。F.,《美国数学月刊》,70(3),289,1963。[3] Shannon,C。E.,《贝尔系统技术杂志》,27(3),379,1948。[4] Moharir,P。S.,IETE研究杂志,16(2),140,1970。[5] Basu,M.,Prasad,B.,Chaos,Solitons分形,41(5),2517,2009。[6] Catarino,P。M.,Borges,A.[7] Soykan,Y。,《数学进步研究杂志》,18(4),58,2021。[8]çelemoğlu,ç。[9] Gauss,C.F。,理论残留物biquadraticorum:评论Secunda,典型Dieterichtianis,1832年。[10] Halici,S.,Sinan,O。Z.