尤其是,我们调查了针对基于晶格的密码系统中多项式乘法的实施工程,其中具有指令套件的架构架构/扩展ARMV7-M,ARMV7E-M,ARMV7E-M,ARMV8-A和AVX2。本文有三个重点:(i)模块化算术,(ii)同态和(iii)矢量化。对于模块化算术,我们调查了蒙哥马利,巴雷特和panthard乘法。对于同构,我们调查(a)各种同态,例如cooley-tukey FFT,良好 - 托马斯FFT,Bruun的FFT,Rader's FFT,Rader's FFT,Karat-suba和Toom – Cook; (b)与系数环相邻的各种代数技术,包括定位,Schönhage的FFT,Nussbaumer的FFT和系数环开关; (c)与多项式模量相关的各种代数技术,包括扭曲,组成的乘法,∞评估,截断,不完全转化,步骤和toeplitz矩阵矢量 - uct。为矢量化,我们调查了同态和矢量算术之间的关系。然后,我们进行了几个案例研究:我们比较了二锂和kyber中使用的模块化乘法的实现,解释了如何在Saber中利用矩阵对矢量结构,并回顾了NTRU和NTRU Prime与矢量化的转换设计选择。最后,我们概述了几个有趣的实施项目。