摘要 - 由于技术的快速发展和开发,电子系统设计中的微型化已变得不可避免。由于较小的传热表面,热通量密度大大增加了热通量密度,因此对热管理能力提出了挑战。电子冷却中采用纳米流体似乎是实现更好的热量耗散的另一种方法。这项研究探讨了三元杂化纳米流体的可行性:Al 2 O 3:Sio 2在水中浓度不同的水中和混合物比例的水中,在蛇形冷却板中。在这项研究中,研究了0.01%的GO + Al 2 O 3:SIO 2,0.006%GO + Al 2 O 3:SiO 2和0.008%GO + Al 2 O 3:SIO 2的混合比为10:90和20:80(Al 2 O 3:Sio 2)。结果表明,与基础流体相比,纳米流体的0.01%GO + Al 2 O 3:SIO 2(10:90)纳米流体显示出最高增强的传热系数,高1.1倍。随后是0.008%GO + Al 2 O 3:SIO 2(10:90)和0.006%GO + Al 2 O 3:SIO 2(10:90),与基础流体相比,连续增强了1.03次和0.87倍的热传递系数增强。在混合比率的期限内,以10:90(Al 2 O 3:Sio 2)的表现高于20:80。为了评估采用的可行性,进行了优势比(AR)来测量热传递增强和压降效应。AR分析表明,在较低的雷诺,RE数字区域,0.01%GO + Al 2 O 3:SIO 2(10:90)三元杂交纳米流体被证明是最可行的,这是最可行的,这是由于热传递增强的压力较高。
图1。A)在PT/INGA/N -SI/SIO/SIO X/PT下,AO-ECL发射(AO-ECL)的方案是由EXC光子吸收触发的。b)电荷传输机制的方案,导致可见的440-nm光子在固体界面处产生。c)在PT/INGA/INGA/N -SI/SIO X/PT(CYAN曲线)和电解质吸收(灰色曲线)时,在PT/INGA/N -SI/N-SIO/SIO X/PT(灰色曲线)时,在PT/INGA/N -SI/N-SI/N-SIO/SIO X/PT(灰色曲线)处的IR 850 nm LED(棕色曲线)的归一化光谱。si bandGap由虚线的黑线表示,由AO-ECL诱导的波长的移位由红色箭头表示。d)N -Si/Sio X的XPS调查光谱,在涂层之前(橙色曲线)和N -SI/SIO X/PT的N -Si/Sio X/PT,在溅射2 nm厚的PT膜(粉红色曲线)后。
x ge x /sio 2界面,而不是通过脱位成核。该机制导致嵌入式层的形态演化和局部肿胀,这是由SIO 2的粘性流促进的。在这些温度下,Si 1-X Ge X膜在粘性SIO 2中扩展,以最大程度地减少应变能。几何相分析证实,横向膨胀会导致GE凝结过程中积累的应变的松弛。我们建议这种现象可能是文献中已经报道的屈曲机制的起源。这项研究表明,Sio 2可以作为有效的符合性的符合性的底物,用于无缺陷的无缺陷GE RICE SI 1-X GE X薄膜。基于SIO 2矩阵粘弹性的新通用松弛过程可以应用于SI 1-X GE X膜以外的许多其他系统。这里制造的高质量无缺陷富富富富膜可以作为SI基板上各种2D或3D材料异质整合的良好模板。
在法国首个远程运营中心投入使用一年后,液化空气集团今天在马来西亚启用了其东南亚太平洋地区的智能创新运营 (SIO) 中心。SIO 中心可以远程管理该地区 8 个国家/地区的 18 个液化空气大型工业生产部门的生产,同时优化能源消耗并提高这些工厂的可靠性。液化空气集团为该项目投资了 2000 万欧元1。位于吉隆坡的 SIO 中心利用预测分析和数字技术,集成、优化和远程控制液化空气生产部门的运营。这些功能使液化空气集团能够更好地预测和适应整个地区客户不断变化的需求,特别是在氧气、氮气、氩气和氢气的供应方面。这个新的 SIO 中心是对集团于 2017 年 9 月在上海开设的专门用于中国生产部门的 SIO 中心的补充。
NBN Co 根据 NBN 服务运营记录保存和报告规则 (NBN SIO RKR) 向 ACCC 提供机密季度报告。NBN 批发市场指标报告 (报告) 中包含的数据摘录自 NBN SIO RKR 披露指示中规定的 NBN SIO RKR 数据。该报告由八个表格组成,以 Excel 电子表格的形式发布,每个表格都提供了 NBN 批发市场的不同视图。
图5:硅等离子体蚀刻的示意图。在光孔中的模式转移到SIO 2(SIO 2)中(此处未显示,也使用等离子体蚀刻)后,硅(Si)暴露于AR /Cl 2 /O 2等离子体。Cl 2仅攻击SI而不是SIO 2。在蚀刻线时,将暴露的Si侧壁氧化:血浆中的氧与Si形成SiO 2的薄层Si结合。此“氧化物”层可保护侧壁免受Cl 2蚀刻。该特征的底部也被氧化。,但氩离子(AR+)垂直加速了RF偏置打击仅特征的底部(而不是侧面)去除薄氧化物层并暴露基础的Si(XSI),以将其蚀刻为Cl 2。暴露的硅(XSI)被氯原子蚀刻,从而释放了气态SICL 4。(来源:TEL)
二氧化硅SIO 2薄膜使用大气压化学蒸气沉积APCVD与四乙基硅酸盐Teos和臭氧O 3作为反应剂气体。这些纤维用作低温多晶型甲甲硅硅LTP薄膜晶体管TFTS的栅极介电。O 3气体而不是氧气O 2气体,因为后者与LTPS TFT的低温处理不兼容。SiO 2在低温下沉积的纤维纤维对栅极绝缘体材料所需的Si – OH含量和电性能低。尽管使用APCVD沉积的低成本SIO 2纤维制造了LTPS TFT,但制造的设备表现出49 cm 2 / v s的效果迁移率和490 mv / dec的subs Thresshord Swist。结果表明,APCVD用TEOS和O 3沉积的SIO 2是一种有前途的材料,用于低成本和高质量的LTPS TFTS。©2009电化学学会。doi:10.1149/1.3267039保留所有权利。
基于AFNIA(HfO 2 )的硅通道铁电场效应晶体管(HfO 2 Si-FeFET)在非挥发性存储器领域得到了广泛的研究[1-7],这得益于掺杂HfO 2 中铁电性的发现[8]。文献报道中HfO 2 Si-FeFET的存储窗口(MW)大多在1-2 V左右[9-12],不能满足其在多位存储单元应用的要求。为了提高MW,当前的措施主要通过降低掺杂HfO 2 铁电体与Si通道之间底部SiO x 夹层的电场,从而抑制掺杂HfO 2 /SiO x 界面处的电荷捕获[13-16],同时增加SiO x 的数量。最近,有报道称MIFIS结构可以有效提高MW,并使用SiO 2 作为顶部夹层[17-21]。然而,Al 2 O 3 作为顶层尚未见报道。因此,我们报道 Al 2 O 3 层作为顶层中间层,以及 MW 对 Al 2 O 3 厚度的依赖性。
图 1。SiO X 作为辐射屏障。NIP 设备中的质子散乱(a)没有,(b)有 1 μm 厚的 SiO X 质子屏障。红线表示由于质子相互作用而在设备堆栈中形成的总空位与深度的关系。每个案例都给出了设备示意图,设备架构的详细信息请参阅方法部分。代表性 NIP 设备的横截面 SEM 图像,不带(c)和带(d)SiO X 层。(e)NIP 和(g)PIN 设备在用 0.05 MeV 质子辐照之前和之后的平均 PCE,质子辐照的通量分别为 10 13 cm -2 和 10 15 cm -2 ,没有(裸露的)和有(受保护的)SiO X 质子屏障。每个类别对 4-5 个设备进行平均值计算。相应的 JV 曲线显示在(f)和(h)中。